Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Food Sci ; 89(7): 4372-4388, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38837376

RESUMO

High concentrations of carnauba waxes (CRWs) that can compromise organoleptic properties are required to create self-sustained and functional oleogels. The weak physical properties and stability of 4% w/w CRW-rice bran oil (RBO) oleogel were addressed by substituting CRW with beeswax (BW) in different weight ratios. The texture profile analyzer revealed that substituting only 10% (weight ratio) of CRW with BW improved the hardness compared to the mono-CRW oleogel. The hardness of binary oleogels increased gradually as the proportion of BW increased. At a BW ratio of 70% or more, the hardness was three times higher than that of mono-BW oleogel. Rheology analysis showed the same trend as the large deformation test; however, the hardest binary oleogels had lower critical strain and yield point compared to the mono-wax oleogels, implying that they are more prone to lose their structure upon applied stress. Nevertheless, nearly all binary mixtures (except for 10%BW90%CRW) showed oil-binding capacities above 99%, suggesting improved nucleation and crystallization process. Polarized light microscopy showed the coexistence of BW and CRW crystals and changes in the size and arrangement of wax crystals upon proportional changes of the two waxes. X-ray diffraction confirmed no differences in the peaks' location, and all oleogels had ß' polymorphism. Differential scanning calorimetry showed eutectic melting behavior in some binary blends. Oxidation stability in the binary wax oleogels improved as compared to the mono-wax oleogel and bulk RBO. BW and CRW mixtures have promising oil-structuring abilities and have various properties at different ratios that have the potential to be used as solid fat substitutes. PRACTICAL APPLICATION: As a trending green oil-structuring technology, oleogelation has shown great potential to reduce saturated fats in food systems. The current research provides valuable fundamental information on the strong synergistic interactions between beeswax and carnauba wax that have the potential to be used as solid fat substitutes created with a much lower total concentration of the required wax. This will help create wax oleogels with better organoleptic properties and less negative waxy mouthfeel. Such knowledge could prove beneficial for the development of healthy products that have potential applications in meat, bakery, dairy, pharmaceutical, as well as cosmetic industries.


Assuntos
Compostos Orgânicos , Oxirredução , Reologia , Ceras , Ceras/química , Compostos Orgânicos/química , Difração de Raios X
2.
Foods ; 13(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38790816

RESUMO

The effect of shear on heat-induced changes in milk protein concentrate suspensions was examined at different pH levels, revealing novel insights into micellar dissociation and protein aggregation dynamics. Milk protein concentrate suspensions, adjusted to pH of 6.1, 6.4, 6.8, or 7.5, underwent combined heat (90 °C for 5 min or 121 °C for 2.6 min) and shear (0, 100, or 1000 s-1) treatment. The fragmentation of protein aggregates induced by shear was evident in the control MPC suspensions at pH 6.8, irrespective of the temperature. At pH 7.5, shear increased the heat-induced micellar dissociation. This effect was particularly pronounced at 121 °C and 1000 s-1, resulting in reduced particle size and an elevated concentration of κ-casein (κ-CN) in the non-sedimentable phase. At pH 6.1 or 6.4, shear effects were dependent on sample pH, thereby modifying electrostatic interactions and the extent of whey protein association with the micelles. At pH 6.1, shear promoted heat-induced aggregation, evidenced by an increase in particle size and a significant decline in both whey proteins and caseins in the non-sedimentable phase. At pH 6.4, shear-induced fragmentation of aggregates was observed, prominently due to comparatively higher electrostatic repulsions and fewer protein interactions. The influence of shear on heat-induced changes was considerably impacted by initial pH.

3.
Food Chem ; 450: 139296, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38636381

RESUMO

Advanced targeted nanoparticles (NPs) were designed to enhance the targeted delivery of resveratrol (RES) and quercetin (QUE) by utilizing carboxymethyl chitosan (CTS) and Jiuzao glutelin isolate (JGI) conjugates. Briefly, RES and QUE were encapsuled within CTS-JGI-2 (CTS/JGI, m/m, 2:1). The carrier's targeting properties were further improved through the incorporation of folic acid (FA) and polyethylenimine (PEI). Moreover, the stability against digestion was enhanced by incorporating baker yeast cell walls (BYCWs) to construct RES-QUE/FA-PEI/CTS-JGI-2/MAT/BYCW NPs. The results demonstrated that FA-PEI/CTS-JGI-2/MAT/BYCW NPs could improve cellular uptake and targeting property of RES and QUE through endocytosis of folic acid receptors (FOLRs). Additionally, RES-QUE successfully alleviated LPS- and DSS-induced inflammation by regulating NF-κB/IkBa/AP-1 and AMPK/SIRT1signaling pathways and reducing the secretion of inflammatory mediators and factors. These findings indicate FA-PEI/CTS-JGI-2/MAT/BYCW NPs hold promise as an oral drug delivery system with targeted delivery capacities for functional substances prone to instability in dietary supplements.


Assuntos
Quitosana , Ácido Fólico , Nanopartículas , Quercetina , Resveratrol , Quitosana/química , Quitosana/farmacologia , Quitosana/análogos & derivados , Ácido Fólico/química , Ácido Fólico/farmacologia , Quercetina/química , Quercetina/análogos & derivados , Quercetina/farmacologia , Quercetina/administração & dosagem , Nanopartículas/química , Resveratrol/química , Resveratrol/farmacologia , Resveratrol/administração & dosagem , Animais , Camundongos , Humanos , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Células RAW 264.7
4.
Food Chem X ; 22: 101378, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38665626

RESUMO

The interactions among small molecular functional components (FCTs) within a food matrix have become a focal point for enhancing their stability and bioactivities. Jiuzao glutelin (JG) is a mixed plant protein within Jiuzao (a protein-rich baijiu distillation by-product). This study aimed to explore the interactions between JG and selected FCTs, including resveratrol (RES), quercetin (QUE), curcumin (CUR), and azelaic acid (AZA), and the consequential impact on stability and antioxidant activity of the complexes. The findings conclusively demonstrated that the interactions between JG and the FCTs significantly enhanced the storage stability of the complexes. Moreover, the antioxidant activity of the complexes exhibited improvement compared to their individual counterparts. This study underscores the notion that JG and FCTs mutually reinforce, exerting positive effects on stability and antioxidant activity. This symbiotic relationship can be strategically employed to augment the quality of proteins and enhance the functional properties of bioactive components through these interactions.

5.
Food Res Int ; 180: 114032, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38395586

RESUMO

In the present scenario marked by energy source shortages and escalating concerns regarding carbon dioxide emissions, there is a growing emphasis on the optimal utilization of biomass resources. Baijiu, as the Chinese national spirit, boasts remarkably high sales volumes annually. However, the production of baijiu yields various by-products, including solid residues (Jiuzao), liquid wastewater (Huangshui and waste alcohol), and gaseous waste. Recent years have witnessed dedicated research aimed at exploring the composition and potential applications of these by-products, seeking sustainable development and comprehensive resource utilization. This review systematically summarizes recent research, shedding light on both the baijiu brewing process and the bioactive compounds present baijiu production by-products (BPBPs). The primary focus lies in elucidating the potential extraction methods and applications of BPBPs, offering a practical approach to comprehensive utilization of by-products in functional food, medicine, cosmetic, and packaging fields. These applications not only contribute to enhancing production efficiency and mitigating environmental pollution, but also introduce innovative concepts for the sustainable advancement of associated industries. Future research avenues may include more in-depth compositional analysis, the development of utilization technologies, and the promotion of potential industrialization.


Assuntos
Poluição Ambiental , Alimento Funcional
6.
Foods ; 13(2)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38254564

RESUMO

Milk protein concentrates (MPCs) possess significant potential for diverse applications in the food industry. However, their heat stability may be a limitation to achieving optimal functional performance. Shearing, an inherent process in food manufacturing, can also influence the functionality of proteins. The aim of this research was to examine the heat stability of reconstituted MPCs prepared at two protein concentrations (4% and 8% w/w protein) when subjected to varying levels of shearing (100, 1000, or 1500 s-1) during heating at 90 °C for 5 min or 121 °C for 2.6 min. While the impact of shear was relatively minor at 4% protein, it was more pronounced in 8% protein MPC suspensions, leading to a considerable decline in heat stability. An increase in protein concentration to 8% amplified protein interactions, intensified by shearing. This, in turn, resulted in comparatively higher aggregation at elevated temperatures and subsequently reduced the heat stability of the reconstituted MPCs.

7.
Foods ; 12(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38137201

RESUMO

The inability of lactose to properly crystallize due to the presence of high amounts of salts poses significant hurdles for its downstream processing with some dairy waste streams such as acid whey. This study aimed to investigate the physicochemical and thermal behaviors of lactose in the presence of cations commonly present in acid whey. A model-based study was conducted, utilizing various cations (Mg, Ca, K, and Na) at concentrations (8, 30, 38, and 22 mM, respectively) that are typically found in acid whey. The research experiments were conducted using a factorial design. The thermal analysis of concentrated solutions revealed augmentation in the enthalpy of water evaporation in the presence of individual cations and their combinations in comparison with pure lactose (698.4 J/g). The degree of enthalpy increased following the order of Na+ (918.6 J/g), K+ (936.6 J/g), Mg2+ (987.0 J/g), Ca2+ (993.2 J/g), and their mixture (1005.4 J/g). This resulted in a substantial crystal yield decline in the exactly reversed order to that of the enthalpy. The greatest decline was observed in the presence of the salt mixture (63%) followed by Ca (67%) compared with pure lactose (79%). The yield reduction was also inversely related to the solubility of lactose. The presence of divalent cations appeared to play a role in the isomerization of lactose molecules observed using DSC and XRD diffractograms according to the disappearance of peaks related to ß lactose. The effect of salts on the crystallization of lactose was a combination of cation-lactose interactions, changes in the solubility of lactose, ion-dipole interactions between water and cations, and changes in the structure of water molecules. By deviating the composition of acid whey, the crystallization of lactose can be enhanced, leading to the improved downstream processing of acid whey.

8.
Foods ; 12(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38137208

RESUMO

Milk protein dispersions containing added cocoa powder (1.5% (w/w)) and sucrose (7% (w/w)) and varying levels of κ-carrageenan (0.01, 0.03, or 0.05% w/w) were subjected to combined heat treatment (90 °C/5 min or 121 °C/2.6 min) and shear (100 or 1000 s-1) to investigate the heat stability of milk proteins. The application of shear led to a notable reduction in non-sedimentable proteins, resulting in an increase in the average particle size and apparent viscosity of the dispersions, particularly at high concentrations of k-carrageenan and elevated temperatures. This indicates that shear forces induced prominent protein aggregation, especially at higher κ-carrageenan concentrations. This aggregation was primarily attributed to the destabilisation of micelles and presence of loosely bound caseins within the κ-carrageenan network, which exhibited increased susceptibility to aggregation as collision frequencies increased due to shear.

9.
Food Res Int ; 172: 113135, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37689899

RESUMO

The poor water solubility and rhein (RH) stability limit its application in the functional food industry. In the present study, the RH-loaded water-in-oil-in-water nano emulsion and microcapsules were prepared using the conjugates of pullulan-Jiuzao glutelin (JG) (m/m, 2:1, PJC-2) obtained by Maillard reaction and enteric-soluble materials (polymethlacrylic acid, hydroxypropyl methylcellulose phthalate, cellulose acetate phthalate, and D-mannitol). The effects of different formulations on the microstructure, physicochemical properties, and storage stability of microcapsules were analyzed. The results showed that microcapsules exhibited stability against different external environments. The encapsulation efficiency of RH in the four enteric-soluble-PJC-2 double-deck microcapsules (70.03 ± 3.24%-91.08 ± 4.78%) was significantly improved than PJC-2 ones (61.84 ± 0.47%). The antioxidant activity and stability of RH in the microcapsules were improved (ABTS, 49.7%-113.93%; DPPH, 40.85%-101.82%; FRA, 62.32%-126.42%; and FCA, 70.58%-147.20%) after in vitro simulated digestion and extreme environmental conditions compared to free RH. This work provides a microcapsule based on PJC-2 with enteric-soluble materials for insoluble functional ingredients to improve solubility, stability, and bioactivity in the food industry.


Assuntos
Glutens , Reação de Maillard , Cápsulas , Biopolímeros
10.
Foods ; 12(16)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37628092

RESUMO

The combined interactions between ethylcellulose (EC) and natural waxes to structure edible oil are underexplored. To reduce the high EC concentration required to form a functional oleogel, novel oleogels were prepared using a 50% critical concentration of EC (i.e., 4%) with 1-4% beeswax (BW) and carnauba wax (CRW). One percent wax was sufficient for EC to form self-sustaining oleogel. Rheological analysis demonstrated that 4%EC + 4%BW/CRW had comparable oleogel properties to 8%EC. The yield stress and flow point of wax oleogels were enhanced upon EC addition. EC did not influence the thermal behaviour of the wax component of the oleogel, but the crystallinity and plasticity of the combined oleogel increased. The crystal shape of BW oleogel changed upon EC addition from a needle-like to spherulitic shape. Confocal laser scanning microscopy highlighted the uniform distribution of EC polymeric network and wax crystals. EC/wax mixtures have promising oil-structuring abilities that have the potential to use as solid fat substitutes.

11.
Foods ; 12(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37569113

RESUMO

The degradation of anthraquinones extracted from aloe vera plants can be prevented by encapsulating them in casein micelles (CMs). The oral, gastric, and intestinal digestion behavior of spray-dried microcapsules of casein micelles loaded with aloe vera-extracted anthraquinone powder (CMAQP), freeze-dried powder (CMFDP), and whole-leaf aloe vera gel (CMWLAG) obtained through ultrasonication was investigated. The results found that CMAQP and CMFDP dissolved slowly and coagulated into large curds during gastric digestion, improving the retention of anthraquinones in the digestive tract. In contrast, CMWLAG structure was destroyed and increased amounts of anthraquinones were released during oral and gastric digestion phases, indicating increased amounts of surface anthraquinones instead of the encapsulation of anthraquinones in the interior of CMs. The strong hydrophobic interactions protected anthraquinones within the core of CM for CMAQP and delayed diffusion. However, during SIF digestion, both CMAQP and CMFDP released significant amounts of anthraquinones, although CMAQP showed a much more controlled release for both aloin and aloe-emodin over SIF digestion time. The release behavior of anthraquinones from CM microcapsules was a function of the type of anthraquinone that was used to encapsulate. The present study provides insight into the release behavior of loaded bioactive compounds using food-grade CMs as the wall material during in vitro digestion and highlights the importance of the type of bioactive component form that will be encapsulated.

12.
Foods ; 12(11)2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37297505

RESUMO

Heat-induced interactions of calcium and protein in milk lead to undesirable changes in the milk, such as protein coagulation, which can be minimized through the addition of calcium-sequestering salts prior to heat treatment. Thus, the present study investigated the influence of 5 mM added trisodium citrate (TSC) or disodium hydrogen phosphate (DSHP) on the heat-induced (85 °C and 95 °C for 5 min) changes in physical, chemical, and structural properties of buffalo and bovine skim milk mixtures (0:100, 25:75, 50:50, 75:25, and 100:0). Significant changes in pH and calcium activity as a result of TSC or DSHP addition subsequently resulted in higher particle size and viscosity as well as non-sedimentable protein level. These changes are mostly observed during heat treatment at 95 °C and increased proportionally to the concentration of buffalo skim milk in the milk mixture. Significant changes were affected by TSC addition in the 75:25 buffalo:bovine milk blend and buffalo skim milk, but for other milk samples, TSC addition effected comparable changes with DSHP addition. Overall, the addition of TSC or DSHP before heat treatment of buffalo:bovine milk blends caused changes in milk properties that could reduce susceptibility of milk to coagulation.

13.
J Dairy Res ; 90(2): 182-185, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37294040

RESUMO

We investigated sonication as a pre-processing step to reduce acid whey generation during Greek yoghurt manufacture. The generation of a large amount of acid whey during the production of Greek yoghurt is an ongoing problem in the dairy industry and many studies are currently focusing on reducing it. We focused on the use of ultrasonication as a novel approach to minimize the casein fraction in the acid whey stream and simultaneously improve the gel properties. Ultrasound applied before the fermentation modified the structural properties and bonding behaviours of milk proteins, and enhanced the retention of casein in the yoghurt gel after the fermentation and straining steps. Therefore, the use of low-frequency ultrasonication as a pre-processing step may have the potential to provide significant economic benefits to the Greek yoghurt manufacturing process. Moreover, it improved the nutritional and physicochemical properties compared to regular Greek yoghurts.


Assuntos
Caseínas , Soro do Leite , Animais , Caseínas/química , Sonicação/veterinária , Iogurte , Grécia , Proteínas do Soro do Leite/química
14.
Food Res Int ; 165: 112467, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869480

RESUMO

In this work, thermomechanically micronized sugar beet pulp (MSBP), a micron-scaled plant-based byproduct comprised of soluble elements (∼40 wt%) and insoluble fibrous particles (IFPs, ∼60 wt%), was used as a sole stabilizer for oil-in-water emulsion fabrication. The influence of emulsification parameters on the emulsifying properties of MSBP was investigated, including emulsification techniques, MSBP concentration, and oil weight fraction. High-speed shearing (M1), ultrasonication (M2), and microfludization (M3) were used to fabricate oil-in-water emulsions (20% oil) with 0.60 wt% MSBP as stabilizer, in which the d4,3 value was 68.3, 31.5, and 18.2 µm, respectively. Emulsions fabricated by M2 and M3 (higher energy input) were more stable than M1 (lower energy input) during long-term storage (30 days) as no significant increase of d4,3. As compared to M1, the adsorption ratio of IFPs and protein was increased from ∼0.46 and ∼0.34 to ∼0.88 and ∼0.55 by M3. Fabricated by M3, the creaming behavior of emulsions was completely inhibited with 1.00 wt% MSBP (20% oil) and 40% oil (0.60 wt% MSBP), showing a flocculated state and could be disturbed by sodium dodecyl sulfate. The gel-like network formed by IFPs could be strengthened after storage as both viscosity and module were significantly increased. During emulsification, the co-stabilization effect of the soluble elements and IFPs enabled a compact and hybrid coverage onto the droplet surface, which acted as a physical barrier to endow the emulsion with robust steric repulsion. Altogether, these findings suggested the feasibility of using plant-based byproducts as oil-in-water emulsion stabilizers.


Assuntos
Beta vulgaris , Emulsões , Verduras , Excipientes , Açúcares , Água
15.
Crit Rev Food Sci Nutr ; 63(23): 6069-6113, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35057682

RESUMO

There is a growing need for healthier foods with no trans and reduced saturated fat. However, solid fats play critical roles in texture and sensory attributes of food products, making it challenging to eliminate them in foods. Recently, the concept of oleogelation as a novel oil structuring technique has received numerous attentions owing to their great potential to mimic the properties of solid fats. Understanding textural, rheological and sensory properties of oleogels helps predict the techno-functionalities of oleogels to replace solid fats in food products. This research critically reviews the textural and rheological properties of oleogels prepared by low molecular weight oleogelators (LMWGs) and functional characteristics of foods formulated by these oleogels. The mechanical properties of LMWG-containing oleogels are comprehensively discussed against conventional solid fats. The interactions between the oleogel and its surrounding food matrix are explained, and the sensory attributes of oleogel containing reformulated products are highlighted. Scientific insights into the texture and rheological properties of oleogels manufactured with a wide range of low molecular gelators and their related products are provided in order to boost their implication for creating healthier foods with high consumer acceptability. Future research opportunities on low molecular weight gelators are also discussed.


Assuntos
Ácidos Graxos , Compostos Orgânicos , Peso Molecular , Reologia
16.
Int J Biol Macromol ; 226: 679-689, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36436597

RESUMO

Inspired by the emulsion stability of sugar beet pulp pectin, the hydrophobic protein fraction in sugar beet pulp (SBP) is expected to feature high interfacial activity. This work retrieved alkaline extracted protein-polysaccharide conjugates (AEC) from partially depectinized SBP by hot alkaline extraction. AEC was protein-rich (57.20 %), and the polysaccharide mainly comprised neutral sugar, which adopted a rhamnogalacturonan-I pectin-like structure. The hydrophobic polypeptide chains tangled as a dense 'core' with polysaccharide chains attached as a hydrated 'shell' (hydrodynamic radius of ~110 nm). AEC could significantly decrease the oil-water interfacial tension (11.58 mN/m), featuring superior emulsification performance than three control emulsifiers, especially the excellent emulsifying stability (10 % oil) as the emulsion droplet size of 0.438 and 0.479 µm for fresh and stored (60 °C, 5 d) emulsions, respectively. The relationship of molecular structure to emulsification was investigated by specific enzymic modification, suggesting the intact macromolecular structure was closely related to emulsifying activity and that the NS fraction contributed greatly to emulsifying stability. Moreover, AEC was highly efficient to stabilize gel-like high internal phase emulsions (oil fraction 0.80) with low concentration (0.2 %) and even high ionic strength (0-1000 mM). Altogether, valorizing AEC as an emulsifier is feasible for high-value utilization of SBP.


Assuntos
Beta vulgaris , Emulsões/química , Beta vulgaris/química , Emulsificantes/química , Pectinas/química , Tensão Superficial
17.
Foods ; 11(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36230075

RESUMO

Dairy and beverage products are considered highly nutritious. The increase demand for added nutritional benefits within the food systems consumed by the consumers paves the pathway towards fortifying nutraceuticals into these products. However, nutraceuticals are highly unstable towards harsh processing conditions. In addition, the safety of dairy and beverage products plays a very important role. Therefore, various heat treatments are in practice. As the heat-treated dairy and beverage products tends to illustrate several alterations in their organoleptic characteristics and nutritional properties, the demand for alternative non-thermal processing technologies has increased extensively within the food industry. Ultrasound and high-pressure processing technologies are desirable for this purpose as well as a safe and non-destructive technology towards encapsulation of nutraceuticals into food systems. There are benefits in implementing these two technologies in the production of dairy and beverage products with encapsulants, such as manufacturing high-quality products with improved nutritional value while simultaneously enhancing the sensory characteristics such as flavour, taste, texture, and colour and attaining the microbial quality. The primary objective of this review is to provide detailed information on the encapsulation of nutraceuticals and mechanisms involved with using US and HPP technologies on producing encapsulated yoghurt and beverage products.

18.
Gels ; 8(9)2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36135309

RESUMO

Aloe-vera extracted anthraquinones (aloin, aloe-emodin, rhein) possess a wide range of biological activities, have poor solubility and are sensitive to processing conditions. This work investigated the ultrasound-assisted encapsulation of these extracted anthraquinones (AQ) into casein micelles (CM). The particle size and zeta potential of casein micelles loaded with aloin (CMA), aloe-emodin (CMAE), rhein (CMR) and anthraquinone powder (CMAQ) ranged between 171-179 nm and -23 to -17 mV. The AQ powder had the maximum encapsulation efficiency (EE%) (aloin 99%, aloe-emodin 98% and rhein 100%) and encapsulation yield, while the whole leaf Aloe vera gel (WLAG) had the least encapsulation efficiency. Spray-dried powder (SDP) and freeze-dried powder (FDP) of Aloe vera showed a significant increase in size and zeta potential related to superficial coating instead of encapsulation. The significant variability in size, zeta potential and EE% were related to anthraquinone type, its binding affinity, and its ratio to CM. FTIR spectra confirmed that the structure of the casein micelle remained unchanged with the binding of anthraquinones except in casein micelles loaded with whole-leaf aloe vera gel (CMWLAG), where the structure was deformed. Based on our findings, Aloe vera extracted anthraquinones powder (AQ) possessed the best encapsulation efficiency within casein micelles without affecting its structure. Overall, this study provides new insights into developing new product formulations through better utilization of exceptional properties of casein micelles.

19.
Foods ; 11(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35681363

RESUMO

The present study explored the stability of extracted anthraquinones (aloin, aloe-emodin and rhein) from whole-leaf Aloe vera gel (WLAG), its freeze-dried powder (FDP) and spray-dried powder (SDP) under varying pH and temperature conditions during storage. Each anthraquinone behaved differently under different processing parameters. The amount of anthraquinones present in the gel was higher than in FDP and SDP. The aloin contents decreased by more than 50% at 50 °C and 70 °C, while at 25 °C and 4 °C, the decrease was moderate. A substantial reduction in aloin concentration was noticed at pH 6.7, whereas it remained unaffected at pH 3.5. The temperature and pH had no significant effect on the stability of aloe-emodin. Interestingly, a small quantity of rhein was detected during storage due to the oxidative degradation of aloin into aloe-emodin and rhein. These findings can provide significant insight into retaining anthraquinones during processing while developing functional foods and nutraceuticals to obtain maximum health benefits.

20.
Molecules ; 27(5)2022 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35268820

RESUMO

The traditional Cannabis plant as a medicinal crop has been explored for many thousands of years. The Cannabis industry is rapidly growing; therefore, optimising drying methods and producing high-quality medical products have been a hot topic in recent years. We systemically analysed the current literature and drew a critical summary of the drying methods implemented thus far to preserve the quality of bioactive compounds from medicinal Cannabis. Different drying techniques have been one of the focal points during the post-harvesting operations, as drying preserves these Cannabis products with increased shelf life. We followed or even highlighted the most popular methods used. Drying methods have advanced from traditional hot air and oven drying methods to microwave-assisted hot air drying or freeze-drying. In this review, traditional and modern drying technologies are reviewed. Each technology will have different pros and cons of its own. Moreover, this review outlines the quality of the Cannabis plant component harvested plays a major role in drying efficiency and preserving the chemical constituents. The emergence of medical Cannabis, and cannabinoid research requires optimal post-harvesting processes for different Cannabis strains. We proposed the most suitable method for drying medicinal Cannabis to produce consistent, reliable and potent medicinal Cannabis. In addition, drying temperature, rate of drying, mode and storage conditions after drying influenced the Cannabis component retention and quality.


Assuntos
Canabinoides , Cannabis , Maconha Medicinal , Dessecação/métodos , Liofilização , Maconha Medicinal/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...