Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ArXiv ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39010877

RESUMO

Protein phosphorylation involves the reversible modification of a protein (substrate) residue by another protein (kinase). Liquid chromatography-mass spectrometry studies are rapidly generating massive protein phosphorylation datasets across multiple conditions. Researchers then must infer kinases responsible for changes in phosphosites of each substrate. However, tools that infer kinase-substrate interactions (KSIs) are not optimized to interactively explore the resulting large and complex networks, significant phosphosites, and states. There is thus an unmet need for a tool that facilitates user-friendly analysis, interactive exploration, visualization, and communication of phosphoproteomics datasets. We present PhosNetVis, a web-based tool for researchers of all computational skill levels to easily infer, generate and interactively explore KSI networks in 2D or 3D by streamlining phosphoproteomics data analysis steps within a single tool. PhostNetVis lowers barriers for researchers in rapidly generating high-quality visualizations to gain biological insights from their phosphoproteomics datasets. It is available at: https://gumuslab.github.io/PhosNetVis/.

2.
J Cell Biol ; 223(4)2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38353656

RESUMO

The ability to dynamically assemble contractile networks is required throughout cell physiology, yet direct biophysical mechanisms regulating non-muscle myosin 2 filament assembly in living cells are lacking. Here, we use a suite of dynamic, quantitative imaging approaches to identify deterministic factors that drive myosin filament appearance and amplification. We find that actin dynamics regulate myosin assembly, but that the static actin architecture plays a less clear role. Instead, remodeling of actin networks modulates the local myosin monomer levels and facilitates assembly through myosin:myosin-driven interactions. Using optogenetically controlled myosin, we demonstrate that locally concentrating myosin is sufficient to both form filaments and jump-start filament amplification and partitioning. By counting myosin monomers within filaments, we demonstrate a myosin-facilitated assembly process that establishes filament stacks prior to partitioning into clusters that feed higher-order networks. Together, these findings establish the biophysical mechanisms regulating the assembly of non-muscle contractile structures that are ubiquitous throughout cell biology.


Assuntos
Citoesqueleto de Actina , Actinas , Miosina Tipo II , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Camundongos , Fibroblastos , Humanos , Células HEK293 , Miosina Tipo II/metabolismo
3.
Int J Biochem Cell Biol ; 161: 106442, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37348811

RESUMO

In addition to biochemical and electrochemical signaling, cells also rely extensively on mechanical signaling to regulate their behavior. While a number of tools have been adapted from physics and engineering to manipulate cell mechanics, they typically require specialized equipment or lack spatiotemporal precision. Alternatively, a recent, more elegant approach is to use light itself to modulate the mechanical equilibrium inside the cell. This approach leverages the power of optogenetics, which can be controlled in a fully reversible manner in both time and space, to tune RhoA signaling, the master regulator of cellular contractility. We review here the fundamentals of this approach, including illustrating the tunability and flexibility that optogenetics offers, and demonstrate how this tool can be used to modulate both internal cytoskeletal flows and contractile force generation. Together these features highlight the advantages that optogenetics offers for investigating mechanical interactions in cells.


Assuntos
Mecanotransdução Celular , Transdução de Sinais , Transdução de Sinais/fisiologia , Contração Muscular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...