Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 5(22): 11623-30, 2013 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-24187913

RESUMO

We have designed and synthesized a new thiocyante-free ruthenium complex containing 2,6-bis(1-methylbenzimidazol-2-yl)pyridine, coded as SPS-G3, and it has been used as an efficient photosensitizer for dye-sensitized solar cells (DSSCs). Upon sensitization of SPS-G3 on nanocrystalline TiO2 film, the DSSC test cell yielded a large short-circuit photocurrent (16.15 mA cm(-2)), an open circuit voltage of 0.52 V, and a fill factor (FF) of 0.72, resulting in an overall power conversion efficiency (PCE) of 6.04% under simulated AM 1.5 solar irradiation (100 mW cm(-2)). DSSCs were prepared by adding various concentrations of multiwall carbon nanotubes (MWCNTs) (up to 0.5 wt %) into the TiO2 nanoparticles. Optimization of MWCNT concentration (0.3 wt %) lead to PCE values as high as 7.76%, while the test cells employing pure TiO2 photoanode obtained an efficiency of 6.04%. The results indicate that the PCE of MWCNTs/TiO2 composite DSSCs are dependent on the quantity of MWCNTs loading on the photoanodes. A small amount (0.3 wt %) clearly enhances the PCE of DSSC, while the excessive MWCNT loading lowers the photovoltaic performance of the DSSC. The increase in the PCE has been attributed to the decrease in charge-transport resistance, charge-transport time, and electron lifetime, which are estimated from electrochemical impedance spectra.

2.
J Nanosci Nanotechnol ; 12(6): 4489-94, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22905490

RESUMO

Two new metal-free organic sensitizers with simplest structural variations have been synthesized for application in nanocrystalline TiO2 sensitized solar cells. The donor-pi-bridge-acceptor (D-pi-A) structure dyes, Y2 and Y3 each designed with three parts, an electron donor unit (substituted phenyl), a linker unit (thiophene), and an anchor unit (cyanoacrylic acid) showed maximal monochromatic incident photon to current conversion efficiencies (IPCE) in a device reaching upto 67% and 82% respectively. The organic sensitizers with 3,4,5-trimethoxy phenyl (Y3) as donor moieties obtained better solar light to electrical energy conversion efficiencies of 3.30% where as the organic sensitizer with 2,4-difluoro phenyl as donor (Y2) showed comparatively lower efficiency of 1.02%. The efficiency obtained with the reference sensitizer N719 under similar fabrication and evaluation conditions was 5.84%.


Assuntos
Corantes/química , Fontes de Energia Elétrica , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Compostos Orgânicos/química , Semicondutores , Energia Solar , Titânio/química , Desenho de Equipamento , Análise de Falha de Equipamento , Flúor/química , Metais , Tamanho da Partícula
3.
Dalton Trans ; 41(29): 8770-2, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22714691

RESUMO

The new sensitizer MC119 has been synthesized and the solar cell constructed with 0.25 cm(2) active area photoelectrode in combination with an electrolyte composed of 0.6 M dimethylpropyl-imidazolium iodide (DMPII), 0.05 M I(2), 0.5 M TBP and 0.1 M LiI in acetonitrile achieved a solar to electric energy conversion efficiency (η) of 8.36% under Air Mass (AM) 1.5 sunlight, while the reference N719 sensitized solar cell exhibited η-value of 7.2%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...