Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 30(33): e202400933, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609334

RESUMO

A relaxin-like gonad-stimulating peptide (RGP), Aso-RGP, featuring six cysteine residues, was identified in the Crown-of-Thorns Starfish (COTS, Acanthaster cf. solaris) and initially produced through recombinant yeast expression. This method yielded a single-chain peptide with an uncleaved C-peptide (His Tag) and suboptimal purity. Our objective was to chemically synthesize Aso-RGP in its mature form, comprising two chains (A and B) and three disulfide bridges, omitting the C-peptide. Furthermore, we aimed to synthesize a newly identified relaxin-like peptide, Aso-RLP2, from COTS, which had not been previously synthesized. This paper reports the first total chemical synthesis of Aso-RGP and Aso-RLP2. Aso-RGP synthesis proceeded without major issues, whereas the A-chain of Aso-RLP2, in its reduced and unfolded state with two free thiols, presented considerable challenges. These were initially marked by "messy" RP-HPLC profiles, typically indicative of synthesis failure. Surprisingly, oxidizing the A-chain significantly improved the RP-HPLC profile, revealing the main issue was not synthesis failure but the peptide's aggregation tendency, which initially obscured analysis. This discovery highlights the critical need to account for aggregation in peptide synthesis and analysis. Ultimately, our efforts led to the successful synthesis of both peptides with purities exceeding 95 %.


Assuntos
Dissulfetos , Peptídeos , Estrelas-do-Mar , Estrelas-do-Mar/química , Dissulfetos/química , Peptídeos/química , Peptídeos/síntese química , Animais , Cromatografia Líquida de Alta Pressão , Sequência de Aminoácidos , Cisteína/química , Oxirredução
2.
J Med Chem ; 67(9): 7276-7282, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38465973

RESUMO

Glucagon-like peptide receptor (GLP-1R) agonists (e.g., semaglutide, liraglutide, etc.) are efficient treatment options for people with type 2 diabetes and obesity. The manufacturing method to produce semaglutide, a blockbuster GLP-1 drug on the market, involves multistep synthesis. The large peptide has a hydrophobic fatty acid side chain that makes it sparingly soluble, and its handling, purification, and large-scale production difficult. The growing demand for semaglutide that the manufacturer is not capable of addressing immediately triggered a worldwide shortage. Thus, we have developed a potential alternative analogue to semaglutide by replacing the hydrophobic fatty acid with a hydrophilic human complex-type biantennary oligosaccharide. Our novel glycoGLP-1 analogue was isolated in an ∼10-fold higher yield compared with semaglutide. Importantly, our glycoGLP-1 analogue possessed a similar GLP-1R activation potency to semaglutide and was biologically active in vivo in reducing glucose levels to a similar degree as semaglutide.


Assuntos
Peptídeo 1 Semelhante ao Glucagon , Glicosilação , Humanos , Animais , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/química , Peptídeos Semelhantes ao Glucagon/farmacologia , Peptídeos Semelhantes ao Glucagon/química , Peptídeos Semelhantes ao Glucagon/análogos & derivados , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/síntese química , Masculino , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Engenharia de Proteínas , Camundongos
3.
Bioconjug Chem ; 34(6): 1014-1018, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37192432

RESUMO

Exenatide was the first marketed GLP-1 receptor agonist for the treatment of type 2 diabetes. Modification to the chemical structure or the formulation has the potential to increase the stability of exenatide. We introduced human complex-type sialyloligosaccharide to exenatide at the native Asn28 position. The synthesis was achieved using both solid phase peptide synthesis (SPPS) and Omniligase-1-mediated chemoenzymatic ligation. The results demonstrate that glycosylation increases the proteolytic stability of exenatide while retaining its full biological activity.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Exenatida , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes , Glicosilação , Peptídeo Hidrolases , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Peçonhas
4.
ACS Omega ; 8(15): 13715-13720, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37091377

RESUMO

Commercially available insulins are manufactured by recombinant methods for the treatment of diabetes. Long-acting insulin drugs (e.g., detemir and degludec) are obtained by fatty acid conjugation at LysB29 ε-amine of insulin via acid-amide coupling. There are three amine groups in insulin, and they all react with fatty acids in alkaline conditions. Due to the lack of selectivity, such conjugation reactions produce non-desired byproducts. We designed and chemically synthesized a novel thiol-insulin scaffold (CysB29-insulin II), by replacing the LysB29 residue in insulin with the CysB29 residue. Then, we conjugated a fatty acid moiety (palmitic acid, C16) to CysB29-insulin II by a highly efficient and selective thiol-maleimide conjugation reaction. We obtained the target peptide (palmitoyl-insulin) rapidly within 5 min without significant byproducts. The palmitoyl-insulin is shown to be structurally similar to insulin and biologically active both in vitro and in vivo. Importantly, unlike native insulin, palmitoyl-insulin is slow and long-acting.

5.
Org Biomol Chem ; 20(9): 1907-1915, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35166741

RESUMO

The synthesis of a sufficient amount of homogeneous glycoprotein is of great interest because natural glycoproteins show considerable heterogeneity in oligosaccharide structures, making the studies on glycan structure-function relationship difficult. Herein, we report optimized methods that can accelerate the semisynthesis of homogeneous glycoproteins based on recombinant expression and chemical conversion. Peptide thioesters and peptides with Cys residues at their N-terminals are necessary intermediates to perform native chemical ligation. We successfully performed thioesterification for a peptide prepared in E. coli via Cys-cyanylation at its C-terminal followed by hydrazinolysis and acidic thiolysis. These optimized conditions could tolerate an acid labile Thz protected Cys at the N-terminal of a peptide-hydrazide and specific cyanylation of the C-terminal Cys to yield a peptide thioester. To reduce the amount of precious oligosaccharide that is required in the conventional SPPS method, an improved liquid phase glycopeptide coupling was also optimized in a good yield (46% over four steps). Lastly, chemoselective protection of the internal cysteines and activation of the N-terminal cysteine were optimized toward a long peptide prepared in E. coli. By using these strategies, a full-length interferon-ß glycosyl polypeptide as a model was successfully obtained.


Assuntos
Proteínas de Escherichia coli/biossíntese , Interferon beta/biossíntese , Peptídeos/metabolismo , Cisteína/química , Cisteína/metabolismo , Proteínas de Escherichia coli/química , Glicosilação , Interferon beta/química , Peptídeos/química
6.
J Org Chem ; 87(1): 114-124, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34889597

RESUMO

Semisynthesis using recombinant polypeptides as building blocks is a powerful approach for the preparation of proteins with a variety of modifications such as glycosylation. The activation of the C terminus of recombinant peptides is a key step for coupling peptide building blocks and preparing a full-length polypeptide of a target protein. This article reports two chemical approaches for transformation of the C terminus of recombinant polypeptides to thioester surrogates. The first approach relies on efficient substitution of the C-terminal Cys residue with bis(2-sulfanylethyl)amine (SEA) to yield peptide-thioester surrogates. The second approach employs a native tripeptide, cysteinyl-glycyl-cysteine (CGC), to yield peptide-thioesters via a process mediated by a thioester surrogate. Both chemical transformation methods employ native peptide sequences and were thereby successfully applied to recombinant polypeptides. As a consequence, we succeeded in the semisynthesis of a glycosylated form of inducible T cell costimulator (ICOS) for the first time.


Assuntos
Cisteína , Peptídeos , Sequência de Aminoácidos , Glicoproteínas , Glicosilação
7.
Bioconjug Chem ; 32(10): 2148-2153, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34494823

RESUMO

The current commercially available glucagon formulations for the treatment of severe hypoglycemia must be reconstituted immediately prior to use, owing to the susceptibility of glucagon to fibrillation and aggregation in an aqueous solution. This results in the inconvenience of handling, misuse, and wastage of this drug. To address these issues, we synthesized a glycosylated glucagon analogue in which the 25th residue (Trp) was replaced with a cysteine (Cys) and a Br-disialyloligosaccharide was conjugated at the Cys thiol moiety. The resulting analogue, glycoglucagon, is a highly potent full agonist at the glucagon receptor. Importantly, glycoglucagon exhibits markedly reduced propensity for fibrillation and enhanced thermal and metabolic stability. This novel analogue is thus a valuable lead for producing stable liquid glucagon formulations that will improve patient compliance and minimize wastage.


Assuntos
Glucagon , Hipoglicemia , Cisteína , Humanos
8.
Front Chem ; 9: 650025, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33912539

RESUMO

Peptides and proteins are attractive targets for therapeutic drug development due to their exquisite target specificity and low toxicity profiles. However, their complex structures give rise to several challenges including solubility, stability, aggregation, low bioavailability, and poor pharmacokinetics. Numerous chemical strategies to address these have been developed including the introduction of several natural and non-natural modifications such as glycosylation, lipidation, cyclization and PEGylation. Glycosylation is considered to be one of the most useful modifications as it is known to contribute to increasing the stability, to improve solubility, and increase the circulating half-lifves of these biomolecules. However, cellular glycosylation is a highly complex process that generally results in heterogenous glycan structures which confounds quality control and chemical and biological assays. For this reason, much effort has been expended on the development of chemical methods, including by solid phase peptide synthesis or chemoenzymatic processes, to enable the acquisition of homogenous glycopeptides to greatly expand possibilities in drug development. In this mini-review, we highlight the importance of such chemical glycosylation methods for improving the biophysical properties of naturally non-glycosylated peptides as applied to the therapeutically essential insulin and related peptides that are used in the treatment of diabetes.

9.
Chemistry ; 25(43): 10197-10203, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31106456

RESUMO

A simple and efficient strategy for the selective modification of the peptide N terminus with an unnatural amino acid is described. A peptide having a SUMO-HisTag-TEV sequence (SUMO: small ubiquitin-related modifier, TEV: tobacco etch virus) preceding the N terminus of the target peptide was designed. Recombinant expression in E. coli and subsequent SUMO protease cleavage yielded the HisTag-TEV-target peptide. Partial protection of the lysine side chains of this peptide with d-glucopyranosyloxycarbonyl and removal of the HisTag-TEV sequence by TEV protease yielded the partially protected peptide with a free N-terminal amine. Coupling of selenocysteine selectively at the N terminus and subsequent acidic deprotection of the carbohydrate protecting groups yielded a modified peptide that can be used for native chemical ligation (NCL). As a proof of concept, the modification of a longer recombinant peptide with selenocysteinylserine (GalNAc) at the N terminus was demonstrated.


Assuntos
Peptídeos/química , Acetilação , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão , Endopeptidases/química , Escherichia coli/metabolismo , Histidina/química , Interações Hidrofóbicas e Hidrofílicas , Oligopeptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteína SUMO-1/química , Selenocisteína/química , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...