Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Invest Ophthalmol Vis Sci ; 65(6): 36, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38916883

RESUMO

Purpose: Neutrophils are known mediators of innate immunity, yet their effector function in herpesvirus infections remains poorly understood. Here, we elucidate the mechanistic action and pivotal role of neutrophil extracellular traps (NETs) during herpes simplex virus type 1 (HSV-1) ocular infection. Methods: Neutrophils were collected from mice for HSV-1 infection, fluorescence imaging, and immunoblotting assay. Tear samples from healthy subjects and patients with HSV-1 and mice were collected at L. V. Prasad Eye Institute, India, and at the University of Illinois, USA, respectively. For the in vivo study, C57BL/6 mice as well as diversity outbred mice were infected with HSV-1 (McKrae strain) followed by tear fluid collection at various time points (0-10 days). Samples were used for Flow cytometry, ELISA, and immunofluorescence assay. Human transcriptomic profile of keratitis dataset was used evaluate NETosis signaling pathways. We also performed neutrophil depletion studies. Results: Our data revealed a discernible temporal NET formation (NETosis) predominantly in the infected eye, across normal and diversity outbred murine models and human cases of HSV-1 infection. HSV-1 instigates swift NETosis governed by caspase-1 activation and myeloperoxidase secretion. Distinct accumulations of neutrophils, remaining unengaged in NET release in the contralateral eye post-infection, hinting at a proactive defensive posture in the uninfected eye. Moreover, neutrophil depletion accentuated ocular pathology, augmented viral load, and escalated disease scores, substantiating the protective effects of NETs in curtailing viral replication. Conclusions: Our report uncovers a previously unexplored mechanism of NETosis through pro-inflammatory cell death in response to ocular HSV-1 infection, and HPSE up-regulation, identifying new avenues for future studies.


Assuntos
Modelos Animais de Doenças , Armadilhas Extracelulares , Herpesvirus Humano 1 , Ceratite Herpética , Camundongos Endogâmicos C57BL , Neutrófilos , Lágrimas , Animais , Camundongos , Armadilhas Extracelulares/metabolismo , Herpesvirus Humano 1/fisiologia , Ceratite Herpética/virologia , Ceratite Herpética/imunologia , Ceratite Herpética/metabolismo , Humanos , Neutrófilos/imunologia , Lágrimas/virologia , Lágrimas/metabolismo , Feminino , Citometria de Fluxo , Ensaio de Imunoadsorção Enzimática , Imunidade Inata , Infecções Oculares Virais/virologia , Infecções Oculares Virais/metabolismo
3.
Lancet ; 403(10436): 1554-1562, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38555928

RESUMO

BACKGROUND: Enteric fever caused by Salmonella enterica Typhi and Salmonella Paratyphi A is an important public health problem, especially in low-income and middle-income countries with limited access to safe water and sanitation. We present results from, to our knowledge, the first ever human study of a bivalent paratyphoid A-typhoid conjugate vaccine (Sii-PTCV). METHODS: In this double-blind phase 1 study, 60 healthy Indian adults were randomly assigned (1:1) to receive a single intramuscular dose of either Sii-PTCV or typhoid conjugate vaccine (Typbar-TCV). Safety was assessed by observing solicited adverse events for 1 week, unsolicited events for 1 month, and serious adverse events (SAEs) over 6 months. Immunogenicity at 1 month and 6 months was assessed by measuring anti-capsular polysaccharide antigen Vi (anti-Vi) IgG and IgA against Salmonella Typhi and anti-lipopolysaccharide (LPS) IgG against Salmonella Paratyphi A by ELISA, and functional antibodies using serum bactericidal assay (SBA) against Salmonella Paratyphi A. This study is registered with Clinical Trial Registry-India (CTRI/2022/06/043608) and is completed. FINDINGS: 60 participants were enrolled. Of these 60 participants, 57 (95%) participants were male and three (5%) participants were female. Solicited adverse events were observed in 27 (90%) of 30 participants who received Sii-PTCV and 26 (87%) of 30 participants who received Typbar-TCV. The most common local solicited event was pain in 27 (90%) participants who received Sii-PTCV and in 23 (77%) participants who received Typbar-TCV. The most common solicited systemic event was myalgia in five (17%) participants who received Sii-PTCV, whereas four (13%) participants who received Typbar-TCV had myalgia and four (13%) had headache. No vaccine-related unsolicited adverse events or SAEs were reported. The seroconversion rates on day 29 were 96·7% (95% CI 82·8-99·9) with Sii-PTCV and 100·0% (88·4-100·0) with Typbar-TCV for anti-Vi IgG; 93·3% (77·9-99·2) with Sii-PTCV and 100·0% (88·4-100·0) with Typbar-TCV for anti-Vi IgA; 100·0% (88·4-100·0) with Sii-PTCV and 3·3% (0·1-17·2) with Typbar-TCV for anti-LPS (paratyphoid); and 93·3% (77·9-99·2) with Sii-PTCV and 0% (0·0-11·6) with Typbar-TCV for SBA titres (paratyphoid). Paratyphoid anti-LPS immune responses were sustained at day 181. INTERPRETATION: Sii-PTCV was safe and immunogenic for both typhoid and paratyphoid antigens indicating its potential for providing comprehensive protection against enteric fever. FUNDING: Serum Institute of India.


Assuntos
Salmonella enterica , Febre Tifoide , Vacinas Tíficas-Paratíficas , Adulto , Feminino , Humanos , Masculino , Antibacterianos , Imunoglobulina A , Imunoglobulina G , Mialgia , Salmonella typhi , Febre Tifoide/prevenção & controle , Vacinas Combinadas , Vacinas Conjugadas , Método Duplo-Cego
4.
Lancet Infect Dis ; 24(6): 639-649, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38408457

RESUMO

BACKGROUND: Dengue is highly prevalent in Asia and Latin America and has no specific dengue antiviral treatment. A recombinant monoclonal antibody (VIS513) that neutralises all four serotypes of the dengue virus has been developed in India. After confirmation of safety and efficacy in preclinical studies, it was tested in a first-in-human study to assess the safety and pharmacokinetics. METHODS: This was a partially blind (observer-blind), randomised, placebo-controlled, phase 1, single ascending dose study in Australia. Participants were dengue naive, healthy adults (aged 18-45 years) with no clinically significant disorders or immunosuppressive conditions. Four dose levels of dengue monoclonal antibody (ie, 1 mg/kg, 3 mg/kg, 7 mg/kg, and 12 mg/kg; n=4 for 1 mg/kg and n=10 each for 3 mg/kg, 7 mg/kg, and 12 mg/kg doses) were assessed in a dose-ascending way with a placebo control (n=2 for each dose cohort, total n=6) for each cohort except for 1 mg/kg. Within each cohort, participants were first randomly assigned (1:1) in a sentinel sub-cohort and then randomly assigned (9:1) in an expansion sub-cohort to dengue monoclonal antibody or placebo except for the 1 mg/kg cohort. Participants, investigators, and outcome assessors were masked and treatment administrators were not masked. 40 participants received a single intravenous injection or infusion of either dengue monoclonal antibody or placebo over a period of 3 min to 2 h and were followed up until day 85. The primary outcomes were proportion of participants with adverse events and serious adverse events (SAEs) up to 84 days after dosing whereas the secondary outcomes were to assess the pharmacokinetic profile of dengue monoclonal antibody and to assess the presence of anti-drug antibody (ADA) to dengue monoclonal antibody. All participants were included in the safety analysis and the pharmacokinetic population involved participants receiving dengue monoclonal antibody. This study is registered with ClinicalTrials.gov, NCT03883620. FINDINGS: Between March 22 and Dec 23, 2019, 40 healthy adults were randomly assigned and all completed the study. There were no SAEs reported. None of the placebo recipients (n=6) reported any adverse events. 31 (91%) of 34 participants receiving dengue monoclonal antibody reported 143 adverse events (1 mg/kg: four [100%] of four participants; 3 mg/kg: ten [100%] of ten participants; 7 mg/kg: seven [70%] of ten participants; 12 mg/kg: ten [100%] of ten participants). Of these 143 adverse events, 80 were treatment-related adverse events in 28 (82%) of 34 participants. Headache (16 [47%] of 34), infusion reaction (11 [32%] of 34), lymphopenia (seven [21%] of 34), fatigue (five [15%] of 34), and pyrexia (four [12%] of 34) were the most common reactions. Infusion reactions were reduced in the 7 mg/kg (two [20%] of ten participants) and 12 mg/kg (three [30%] of ten) cohorts with paracetamol premedication compared with the 3 mg/kg cohort (five [50%] of ten). The majority of adverse events were grade 1 or grade 2 in severity, and resolved completely. Median maximum serum concentrations ranged from 28 µg/mL (1 mg/kg) to 525 µg/mL (12 mg/kg). The median elimination half-life ranged from 775 h (1 mg/kg) to 878 h (12 mg/kg). No ADA against dengue monoclonal antibody was detected. INTERPRETATION: Dengue monoclonal antibody was safe and well tolerated. It showed a dose-proportionate increase in pharmacokinetic exposure. These data support further evaluation of dengue monoclonal antibody in patients with dengue for safety and efficacy. FUNDING: Serum Institute of India.


Assuntos
Anticorpos Monoclonais , Anticorpos Antivirais , Vírus da Dengue , Dengue , Humanos , Adulto , Anticorpos Monoclonais/farmacocinética , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/imunologia , Masculino , Feminino , Austrália , Dengue/tratamento farmacológico , Adulto Jovem , Vírus da Dengue/imunologia , Anticorpos Antivirais/sangue , Pessoa de Meia-Idade , Adolescente , Voluntários Saudáveis , Método Simples-Cego , Anticorpos Neutralizantes
5.
Nature ; 625(7996): 743-749, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38233522

RESUMO

Survival requires the selection of appropriate behaviour in response to threats, and dysregulated defensive reactions are associated with psychiatric illnesses such as post-traumatic stress and panic disorder1. Threat-induced behaviours, including freezing and flight, are controlled by neuronal circuits in the central amygdala (CeA)2; however, the source of neuronal excitation of the CeA that contributes to high-intensity defensive responses is unknown. Here we used a combination of neuroanatomical mapping, in vivo calcium imaging, functional manipulations and electrophysiology to characterize a previously unknown projection from the dorsal peduncular (DP) prefrontal cortex to the CeA. DP-to-CeA neurons are glutamatergic and specifically target the medial CeA, the main amygdalar output nucleus mediating conditioned responses to threat. Using a behavioural paradigm that elicits both conditioned freezing and flight, we found that CeA-projecting DP neurons are activated by high-intensity threats in a context-dependent manner. Functional manipulations revealed that the DP-to-CeA pathway is necessary and sufficient for both avoidance behaviour and flight. Furthermore, we found that DP neurons synapse onto neurons within the medial CeA that project to midbrain flight centres. These results elucidate a non-canonical top-down pathway regulating defensive responses.


Assuntos
Aprendizagem da Esquiva , Núcleo Central da Amígdala , Vias Neurais , Neurônios , Aprendizagem da Esquiva/fisiologia , Núcleo Central da Amígdala/citologia , Núcleo Central da Amígdala/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/fisiologia , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico/metabolismo , Vias Neurais/fisiologia , Cálcio/análise , Eletrofisiologia , Ponte/citologia , Ponte/fisiologia
6.
Heliyon ; 9(6): e16963, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37484262

RESUMO

This research investigates the potentials of prodigiosin(PG) derived from bacteria and its formulations against triple-negative breast (TNB), lung, and colon cancer cells. The PG was extracted from S. marcescens using continuous batch culture, characterized, and formulated into lyophilized parenteral nanoparticles (PNPs). The formulations were characterized with respect to entrapment efficiency (EE), DSC, FT-IR, TEM, and proton nuclear magnetic resonance (1H NMR) spectroscopy. In vitro drug release was evaluated in phosphate buffer (pH 7.4) while acute toxicity, hematological and histopathological studies were performed on rats. The in vitro cytotoxicity was evaluated against TNB (MCF-7), lung (A-549), and colon (HT-29) cancer cell lines. High EE (92.3 ± 12%) and drug release of up to 89.4% within 8 h were obtained. DSC thermograms of PG and PG-PNPs showed endothermic peaks indicating amorphous nature. The FT-IR spectrum of PG-PNPs revealed remarkable peaks of pure PG, indicating no strong chemical interaction between the drug and excipients. The TEM micrograph of the PG-PNPs showed nano-sized formulations (20-30 nm) whose particles were mostly lamellar and hexagonal structures. The 1H NMR result revealed the chemical structure of PG showing all assigned proton chemical shifts. Toxicity results of the PG and its formulation up to a concentration of 5000 mg/kg showed insignificant vacuolar changes of hepatocytes in the liver, with normal renal medulla and cortex in the kidney. The PG and PG-PNPs inhibited the growth of breast, lung, and colon cell lines. The nano-sized lipid formulation (PG-PNPs) showed potential in PG delivery and cancer treatments.

7.
Sci Adv ; 9(17): eadf3977, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37115924

RESUMO

Limited knowledge exists on exogenous DNA virus reinfections. Herpes simplex virus-1 (HSV-1), a prototype DNA virus, causes multiple human diseases including vision-threatening eye infections. While reinfection with an exogenous HSV-1 strain is considered plausible, little is known about the underlying mechanisms governing its pathophysiology in a host. Heparanase (HPSE), a host endoglycosidase, when up-regulated by HSV-1 infection dictates local inflammatory response by destabilizing tissue architecture. Here, we demonstrate that HSV-1 reinfection in mice causes notable pathophysiology in wild-type controls compared to the animals lacking HPSE. The endoglycosidase promotes infected cell survival and supports a pro-disease environment. In contrast, lack of HPSE strengthens intrinsic immunity by promoting cytokine expression, inducing necroptosis of infected cells, and decreasing leukocyte infiltration into the cornea. Collectively, we report that immunity from a recent prior infection fails to abolish disease manifestation during HSV-1 reinfection unless HPSE is rendered inactive.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Humanos , Animais , Camundongos , Reinfecção , Glucuronidase/genética , Glucuronidase/metabolismo
8.
PLoS One ; 18(2): e0281388, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36757923

RESUMO

Social behavior is complex and fundamental, and its deficits are common pathological features for several psychiatric disorders including anxiety, depression, and posttraumatic stress disorder. Acute stress may have a negative impact on social behavior, and these effects can vary based on sex. The aim of this study was to explore the effect of acute footshock stress, using analogous parameters to those commonly used in fear conditioning assays, on the sociability of male and female C57BL/6J mice in a standard social approach test. Animals were divided into two main groups of footshock stress (22 male, 24 female) and context exposed control (23 male and 22 female). Each group had mice that were treated intraperitoneally with either the benzodiazepine-alprazolam (control: 10 male, 10 female; stress: 11 male, 11 female), or vehicle (control: 13 male, 12 female; stress: 11 male, 13 female). In all groups, neuronal activation during social approach was assessed using immunohistochemistry against the immediate early gene product cFos. Although footshock stress did not significantly alter sociability or latency to approach a social stimulus, it did increase defensive tail-rattling behavior specifically in males (p = 0.0022). This stress-induced increase in tail-rattling was alleviated by alprazolam (p = 0.03), yet alprazolam had no effect on female tail-rattling behavior in the stress group. Alprazolam lowered cFos expression in the medial prefrontal cortex (p = 0.001 infralimbic area, p = 0.02 prelimbic area), and social approach induced sex-dependent differences in cFos activation in the ventromedial intercalated cell clusters (p = 0.04). Social approach following stress-induced cFos expression was positively correlated with latency to approach and negatively correlated with sociability in the prelimbic area and multiple amygdala subregions (all p < 0.05). Collectively, our results suggest that acute footshock stress induces sex-dependent alterations in defensiveness and differential patterns of cFos activation during social approach.


Assuntos
Alprazolam , Córtex Pré-Frontal , Masculino , Feminino , Camundongos , Animais , Córtex Pré-Frontal/fisiologia , Alprazolam/farmacologia , Camundongos Endogâmicos C57BL , Tonsila do Cerebelo/fisiologia , Comportamento Social
9.
Antiviral Res ; 208: 105454, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36334637

RESUMO

Herpes simplex virus type-1 (HSV1) exploits cellular machinery for its own replicative advantage. Current treatment modalities against HSV1 cause toxicity and drug resistance issues. In the search for alternative forms of treatment, we have uncovered a small molecule, BX795, as a candidate drug with strong antiviral potential owing to its multitargeted mode of action. In this study, we show that in addition to a previously known mechanism of action, BX795 can directly interact with the proviral host factor protein kinase C (PKC) in silico. When administered to HSV1 or mock infected human corneal epithelial (HCE) cells, BX795 significantly reduces the protein level and perinuclear localization of proviral PKC-α and PKC-ζ isoforms. This activity closely mimics that of a known PKC inhibitor, Bisindolylmaleimide I (BIM I), which also inhibits viral replication. Taken together our studies demonstrate a previously unknown mechanism by which BX795 exerts its antiviral potential.


Assuntos
Herpes Simples , Infecções por Herpesviridae , Herpesvirus Humano 1 , Humanos , Herpes Simples/tratamento farmacológico , Infecções por Herpesviridae/tratamento farmacológico , Antivirais/uso terapêutico , Proteína Quinase C/metabolismo
10.
Trends Microbiol ; 30(12): 1128-1130, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36272886

RESUMO

In a recent article, Gao et al. diversify our knowledge of prokaryotic innate immunity by characterizing a novel bacterial defense system that utilizes nucleotide-binding oligomerization-like receptors (NLRs) for recognizing phage proteins.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Imunidade Inata , Proteínas de Transporte , Receptores de Reconhecimento de Padrão
11.
Phys Chem Chem Phys ; 24(38): 23790-23801, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36156002

RESUMO

Materials that can depict persistent deep red light under both ultraviolet (UV) and X-ray illumination can be a boon to sustainable economy, particularly for optical imaging, solid state lighting, and anticounterfeiting applications. Herein, we have made a series of compounds starting from ZnGa2O4:Cr3+ to ZnAl2O4:Cr3+ (individual spinel) by substituting the varied concentration of Al3+ in place of Ga3+ in ZnGa2-xAlxO4:Cr3+ (solid solution). By virtue of the structural and defect engineering doping strategy, the photo and radioluminescence are expected to be improved. Both Cr and Al doping was found to be energetically favorable in ZnGa2O4, where the same does not hold true for Ga doping in ZnAl2O4, as indicated by the DFT-calculated defect formation energies. There seems to be ordering around the dopant ion in the solid solutions compared to either ZnGa2O4 or ZnAl2O4 and is also reflected to as lower persistent luminescence (PerL) lifetimes. PerL under UV, in general. was found to be lower with the enhancement in the Al3+ content endowed by the formation of Cr-Cr ion pair, lower probability of antisite formation, and widening band gap. On the other hand, X-ray excited emission enhances in the solid solution due to the decrease in cation inversion and associated defects. Confocal Microscopy showed that larger particles depicted much brighter deep red emission but failed to percolate to the human cells to a detectable limit; hence, future work is needed for the functionalization of the ZnGa2-xAlxO4:Cr3+ spinel. This work could be of great implication in designing need-based materials, where UV and X-ray excitation is required, for deep red emission with persistent characteristics from chromium-doped spinels.

12.
mBio ; 13(5): e0219422, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36043789

RESUMO

Herpes simplex virus type-1 (HSV-1) infections are known to alter the host metabolism for efficient propagation in vitro. However, in vivo metabolic perturbations upon prolonged HSV-1 infection remain poorly understood. We used high-resolution liquid chromatography coupled with mass spectrometry (LC-MS) and functional assays to determine the state of the trigeminal ganglion (TG) tissue metabolism upon prolonged corneal HSV-1 infection in a murine model. The metabolomics data indicated significant alterations in the host metabolic profile. After HSV-1 infection, the TG microenvironment assumed downregulation of central carbon metabolism and nucleotide synthesis pathways. We validated our observations using in vitro and ex vivo models through targeted inhibition of crucial metabolic polyamine pathways identified in our metabolomics screen. Our findings collectively suggested that HSV-1 infection altered the host metabolic product regulations that limit the energy and macromolecular precursors required for viral replication. IMPORTANCE The more severe ocular pathologies associated with HSV-1 infection are significant vision loss, ocular morbidity, and herpetic keratitis. The current clinical landscape lacks curative drugs and vaccines against HSV-1, a heavy burden associated with this neurotropic, ubiquitous pathogen. The virus is notoriously successful in establishing latency in the host TG, where it remains dormant with periodic reactivations in response to various stimuli like stress and immunosuppression. Metabolic perturbations in tissue microenvironment likely aid the virus in establishing its latent state along with subsequent reactivations yet remain poorly characterized. Here, we used mass spectrometry coupled with statistical data analysis to study the host metabolome in the TG during HSV-1 infection and identify metabolites that likely regulate infection.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Ceratite Herpética , Camundongos , Animais , Herpesvirus Humano 1/fisiologia , Gânglio Trigeminal , Replicação Viral , Córnea , Poliaminas , Carbono , Nucleotídeos , Latência Viral/fisiologia
13.
Nat Commun ; 13(1): 1290, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35277502

RESUMO

Patterned coordination of network activity in the basolateral amygdala (BLA) is important for fear expression. Neuromodulatory systems play an essential role in regulating changes between behavioral states, however the mechanisms underlying this neuromodulatory control of transitions between brain and behavioral states remain largely unknown. We show that chemogenetic Gq activation and α1 adrenoreceptor activation in mouse BLA parvalbumin (PV) interneurons induces a previously undescribed, stereotyped phasic bursting in PV neurons and time-locked synchronized bursts of inhibitory postsynaptic currents and phasic firing in BLA principal neurons. This Gq-coupled receptor activation in PV neurons suppresses gamma oscillations in vivo and in an ex vivo slice model, and facilitates fear memory recall, which is consistent with BLA gamma suppression during conditioned fear expression. Thus, here we identify a neuromodulatory mechanism in PV inhibitory interneurons of the BLA which regulates BLA network oscillations and fear memory recall.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Parvalbuminas , Animais , Complexo Nuclear Basolateral da Amígdala/metabolismo , Medo , Potenciais Pós-Sinápticos Inibidores/fisiologia , Interneurônios/metabolismo , Camundongos , Parvalbuminas/metabolismo
14.
Autophagy ; 18(4): 944-945, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35167411

RESUMO

Very little is known about the mechanisms that restrict neurotropic herpesviruses such as herpes simplex virus-1 (HSV-1) from infecting the central nervous system (CNS) and causing widespread death of neurons. Likewise, HSV-1 is thought to play a role in chronic neurodegeneration, yet a direct association has remained elusive. To address these issues, we recently showed that the selective macroautophagy/autophagy receptor OPTN (optineurin) specifically targets HSV-1 proteins VP16 and gB for degradation to prevent viral spread in the brain. OPTN deficiency alters host cytokine expression and tissue-specific immune signaling, and enhances necroptotic death of infected neurons. HSV-1-infected optn knockout mice show higher susceptibility to lethal CNS infection and the surviving animals demonstrate cognitive deficiency. Our research suggests that OPTN-mediated autophagy provides an intrinsic immune barrier against neurotropic viruses and protects the CNS from neurodegenerative stress.


Assuntos
Herpes Simples , Infecções por Herpesviridae , Herpesvirus Humano 1 , Animais , Autofagia , Proteínas de Ciclo Celular/metabolismo , Herpes Simples/metabolismo , Herpesvirus Humano 1/metabolismo , Macroautofagia , Proteínas de Membrana Transportadoras , Camundongos , Camundongos Knockout
15.
Curr Aging Sci ; 15(1): 2-25, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33653258

RESUMO

BACKGROUND: Alzheimer's Disease (AD) is the most common cause of dementia. Genetics, excessive exposure to environmental pollutants, as well as unhealthy lifestyle practices are often linked to the development of AD. No therapeutic approach has achieved complete success in treating AD; however, early detection and management with appropriate drugs are key to improving prognosis. INTERVENTIONS: The pathogenesis of AD was extensively discussed in order to understand the reasons for the interventions suggested. The interventions reviewed include the use of different therapeutic agents and approaches, gene therapy, adherence to healthy dietary plans (Mediterranean diet, Okinawan diet and MIND diet), as well as the use of medicinal plants. The potential of nanotechnology as a multidisciplinary and interdisciplinary approach in the design of nano-formulations of AD drugs and the use of Superparamagnetic Iron Oxide Nanoparticles (SPIONs) as theranostic tools for early detection of Alzheimer's disease were also discussed.


Assuntos
Doença de Alzheimer , Dieta Mediterrânea , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/epidemiologia , Doença de Alzheimer/etiologia , Diagnóstico Precoce , Humanos
16.
J Immunol ; 208(1): 63-73, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34880107

RESUMO

Very little knowledge exists on virus-specific host cell intrinsic mechanisms that prevent hyperproliferation of primary HSV type 2 (HSV-2) genital infections. In this study, we provide evidence that the Nemo-related protein, optineurin (OPTN), plays a key role in restricting HSV-2 infection both in vitro and in vivo. Contrary to previous reports regarding the proviral role of OPTN during Sendai virus infection, we demonstrate that lack of OPTN in cells causes enhanced virus production. OPTN deficiency negatively affects the host autophagy response and results in a marked reduction of CCL5 induction. OPTN knockout (OPTN-/-) mice display exacerbated genital disease and dysregulated T cell frequencies in infected tissues and lymph nodes. A human transcriptomic profile dataset provides further credence that a strong positive correlation exists between CCL5 upregulation and OPTN expression during HSV-2 genital infection. Our findings underscore a previously unknown OPTN/CCL5 nexus that restricts hyperproliferative spread of primary HSV-2 infection, which may constitute an intrinsic host defense mechanism against herpesviruses in general.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Herpes Genital/imunologia , Herpesvirus Humano 2/fisiologia , Proteínas de Membrana Transportadoras/metabolismo , Animais , Antígenos Virais/imunologia , Autofagia , Proteínas de Ciclo Celular/genética , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Imunidade Inata , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peptídeos/imunologia , RNA Interferente Pequeno/genética , Replicação Viral
17.
mBio ; 12(6): e0279221, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34749529

RESUMO

Under pathological conditions like herpes simplex virus 1 (HSV-1) infection, host-pathogen interactions lead to major reconstruction of the host protein network, which contributes to the dysregulation of signaling pathways and disease onset. Of note is the upregulation of a multifunctional host protein, heparanase (HPSE), following infection, which serves as a mediator in HSV-1 replication. In this study, we identify a novel function of HPSE and highlight it as a key regulator of ß-catenin signal transduction. The regulatory role of HPSE on the activation, nuclear translocation, and signal transduction of ß-catenin disrupts cellular homeostasis and establishes a pathogenic environment that promotes viral replication. Under normal physiological conditions, ß-catenin is bound to a group of proteins, referred to as the destruction complex, and targeted for ubiquitination and, ultimately, degradation. We show that virus-induced upregulation of HPSE leads to the activation of Akt and subsequent stabilization and activation of ß-catenin through (i) the release of ß-catenin from the destruction complex, and (ii) direct phosphorylation of ß-catenin at Ser552. This study also provides an in-depth characterization of the proviral role of ß-catenin signaling during HSV-1 replication using physiologically relevant cell lines and in vivo models of ocular infection. Furthermore, pharmacological inhibitors of this pathway generated a robust antiviral state against multiple laboratory and clinical strains of HSV-1. Collectively, our findings assign a novel regulatory role to HPSE as a driver of ß-catenin signaling in HSV-1 infection. IMPORTANCE Heparanase (HPSE) and ß-catenin have independently been implicated in regulating key pathophysiological processes, including neovascularization, angiogenesis, and inflammation; however, the relationship between the two proteins has remained elusive thus far. For that reason, characterizing this relationship is crucial and can lead to the development of novel therapeutics. For HSV-1 specifically, current antivirals are not able to abolish the virus from the host, leaving patients susceptible to episodes of viral reactivation. Identifying a host-based intervention can provide a better alternative with enhanced efficacy and sustained relief.


Assuntos
Glucuronidase/metabolismo , Herpes Simples/enzimologia , Herpesvirus Humano 1/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , beta Catenina/metabolismo , Motivos de Aminoácidos , Linhagem Celular , Glucuronidase/genética , Herpes Simples/genética , Herpes Simples/metabolismo , Herpes Simples/virologia , Herpesvirus Humano 1/genética , Interações Hospedeiro-Patógeno , Humanos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Ativação Viral , Replicação Viral , Via de Sinalização Wnt , beta Catenina/química , beta Catenina/genética
18.
Nat Commun ; 12(1): 6020, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34650053

RESUMO

Herpes simplex virus type-1 (HSV-1) causes ocular and orofacial infections. In rare cases, HSV-1 can cause encephalitis, which leads to permanent brain injuries, memory loss or even death. Host factors protect humans from viral infections by activating the immune response. However, factors that confer neuroprotection during viral encephalitis are poorly understood. Here we show that mammalian target of rapamycin complex 2 (mTORC2) is essential for the survival of experimental animals after ocular HSV-1 infection in vivo. We find the loss of mTORC2 causes systemic HSV-1 infection due to defective innate and adaptive immune responses, and increased ocular and neuronal cell death that turns lethal for the infected mice. Furthermore, we find that mTORC2 mediated cell survival channels through the inactivation of the proapoptotic factor FoxO3a. Our results demonstrate how mTORC2 potentiates host defenses against viral infections and implicate mTORC2 as a necessary factor for survival of the infected host.


Assuntos
Imunidade , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Neuroproteção , Viroses/imunologia , Animais , Apoptose , Citocinas , Modelos Animais de Doenças , Olho , Feminino , Herpes Simples/imunologia , Herpesvirus Humano 1/imunologia , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
19.
Viruses ; 13(9)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34578329

RESUMO

Heparan sulfate (HS) and heparan sulfate proteoglycans (HSPGs) are considered important for the entry of many different viruses. Previously, we demonstrated that heparanase (HPSE), the host enzyme responsible for cleaving HS chains, is upregulated by herpes simplex virus-1 (HSV-1) infection. Higher levels of HPSE accelerate HS removal from the cell surface, facilitating viral release from infected cells. Here, we study the effects of overexpressing HPSE on viral entry, cell-to-cell fusion, plaque formation, and viral egress. We provide new information that higher levels of HPSE reduce syncytial plaque formation while promoting egress and extracellular release of the virions. We also found that transiently enhanced expression of HPSE did not affect HSV-1 entry into host cells or HSV-1-induced cell-to-cell fusion, suggesting that HPSE activation is tightly regulated and facilitates extracellular release of the maturing virions. We demonstrate that an HSPG-shedding agonist, PMA; a protease, thrombin; and a growth factor, EGF as well as bacterially produced recombinant heparinases resulted in enhanced HSV-1 release from HeLa and human corneal epithelial (HCE) cells. Our findings here underscore the significance of syndecan-1 functions in the HSV-1 lifecycle, provide evidence that the shedding of syndecan-1 ectodomain is another way HPSE works to facilitate HSV-1 release, and add new evidence on the significance of various HSPG shedding agonists in HSV-1 release from infected cells.


Assuntos
Fator de Crescimento Epidérmico/farmacologia , Heparina Liase/farmacologia , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 1/fisiologia , Sindecana-1/genética , Trombina/farmacologia , Liberação de Vírus/efeitos dos fármacos , Córnea/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Células HeLa , Humanos , Sindecana-1/metabolismo , Regulação para Cima , Vírion/efeitos dos fármacos , Vírion/metabolismo , Internalização do Vírus
20.
Pathogens ; 10(7)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202835

RESUMO

A novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic. While the world is striving for a treatment modality against SARS-CoV-2, our understanding about the virus entry mechanisms may help to design entry inhibitors, which may help to limit the virus spreading. Owing to the importance of cellular ACE2 and heparan sulfate in SARS-CoV-2 entry, we aimed to evaluate the efficacy of cationic G1 and G2 peptides in virus entry inhibition. In silico binding affinity studies revealed possible binding sites of G1 and G2 peptides on HS and ACE2, which are required for the spike-HS and spike-ACE2 interactions. Prophylactic treatment of G1 and G2 peptide was also proved to decrease the cell surface HS, an essential virus entry receptor. With these two mechanisms we confirm the possible use of cationic peptides to inhibit the entry of SARS-CoV-2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...