Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Spectrosc ; 78(6): 650-658, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38356251

RESUMO

Whispering gallery mode resonator sensors are nondisruptive optical sensors that can detect and monitor perturbations in a gaseous environment. Through its resonant properties of peak wavelength, amplitude, and quality factor (Q factor), changes in concentration can be quantified within seconds and monitored over days with great stability. In addition, the small footprint, low cost, and high sensitivity are ideal properties for a disposable sensor that can be utilized in extreme environments. The large Q factor of the resonant cavity enables long interaction lengths and amplifies the effect of small changes in the background refractive index, which is detectable in picometer shifts of the resonance wavelength. However, this measurement is susceptible to changes in other environmental factors such as temperature, pressure, and humidity, which manifest on the picometer wavelength scale, reinforcing the need to decouple the variables. In this work, we compare the spectral response of different diameter resonators to carbon dioxide, nitrogen, and its mixtures, observing the spectral shifting and broadening of the cavity resonance near 1550 nm. In addition, the effect of environmental temperature on spectral shifting due to the thermo-optic effect is characterized and quantified. Lastly, the gas concentrations are changed in real time to showcase the tracking and recovery capabilities of the resonator sensor.

2.
Opt Express ; 20(22): 24819-26, 2012 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-23187247

RESUMO

A highly-sensitive optical fiber surface-enhanced Raman scattering (SERS) sensor has been developed by interference lithography. While one facet of the optical fiber is patterned with silver-coated nanopillar array as a SERS platform, the other end of the probe is used, in a remote end detection, to couple the excitation laser into the fiber and send the SERS signal to the spectrometer. SERS performance of the probe is characterized using trans-1,2-bis(4-pyridyl)-ethylene (BPE) monolayer and an enhancement factor of 1.2 × 10(7) can be achieved by focusing the laser directly onto the nanopillar array (front end detection). We also demonstrate that this probe can be used for in situ remote sensing of toluene vapor by the remote end detection. Such a fiber SERS probe shows great potential for molecular detection in various sensing applications.

3.
Nanotechnology ; 21(39): 395701, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20808033

RESUMO

Surface enhanced Raman spectroscopy (SERS) has been increasingly utilized as an analytical technique with significant chemical and biological applications (Qian et al 2008 Nat. Biotechnol. 26 83; Fujita et al 2009 J. Biomed. Opt. 14 024038; Chou et al 2008 Nano Lett.8 1729; Culha et al 2003 Anal. Chem. 75 6196; Willets K A 2009 Anal. Bioanal. Chem. 394 85; Han et al 2009 Anal. Bioanal. Chem. 394 1719; Sha et al 2008 J. Am. Chem. Soc. 130 17214). However, production of a robust, homogeneous and large-area SERS substrate with the same ultrahigh sensitivity and reproducibility still remains an important issue. Here, we describe a large-area ultrahigh-uniformity tapered silver nanopillar array made by laser interference lithography on the entire surface of a 6 inch wafer. Also presented is the rigorous optical characterization method of the tapered nanopillar substrate to accurately quantify the Raman enhancement factor, uniformity and repeatability. An average homogeneous enhancement factor of close to 10(8) was obtained for benzenethiol adsorbed on a silver-coated nanopillar substrate.


Assuntos
Nanoestruturas/química , Dióxido de Silício/química , Prata/química , Análise Espectral Raman/métodos , Nanoestruturas/ultraestrutura , Fenóis , Reprodutibilidade dos Testes , Compostos de Sulfidrila , Propriedades de Superfície
4.
Nano Lett ; 10(8): 2832-7, 2010 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-20698595

RESUMO

We investigate tunable plasmon resonant cavity arrays in paired parallel nanowire waveguides. Resonances are observed when the waveguide length is an odd multiple of quarter plasmon wavelengths, consistent with boundary conditions of node and antinode at the ends. Two nanowire waveguides satisfy the dispersion relation of a planar metal-dielectric-metal waveguide of equivalent width equal to the square field average weighted gap. Confinement factors over 10(3) are possible due to plasmon focusing in the interwire space.

5.
Nano Lett ; 9(1): 467-72, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19072062

RESUMO

We present a novel fabrication method for incorporating nanometer to micrometer scale few-layer graphene (FLG) features onto substrates with electrostatic exfoliation. We pattern highly oriented pyrolytic graphite using standard lithographic techniques and subsequently, in a single step, exfoliate and transfer-print the prepatterned FLG features onto a silicon wafer using electrostatic force. We have successfully demonstrated the exfoliation/printing of 18 nm wide FLG nanolines and periodic arrays of 1.4 mum diameter pillars. Furthermore, we have fabricated graphene nanoribbon transistors using the patterned graphene nanoline. Our electrostatic force assisted exfoliation/print process does not need additional adhesion layers and could be stepped and repeated to deliver the prepatterned graphitic material over wafer-sized areas and allows the construction of graphene-based integrated circuits.


Assuntos
Cristalização/métodos , Grafite/química , Microeletrodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/instrumentação , Condutividade Elétrica , Desenho de Equipamento , Análise de Falha de Equipamento , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Nanotecnologia/métodos , Tamanho da Partícula , Eletricidade Estática , Estresse Mecânico , Propriedades de Superfície
6.
Appl Opt ; 46(26): 6533-8, 2007 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-17846647

RESUMO

What we believe to be a new principle is introduced for the design and selection of gradient-index antireflection profiles that are effective over a wide range of incident angles as well as wavelengths at a given physical film thickness. It is shown that at oblique incidence the smoothness of the optical path of incident light inside a gradient-index film has a crucial effect on the overall reflection. Thus the smoothness of variations in refractive angle (rather than that of the index profile itself) needs to be maximized for wide-angle operation. As an example, the performance of Gaussian and Quintic profiles at large incident angles are considered in light of this point of view.

7.
Opt Express ; 15(13): 8428-37, 2007 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-19547174

RESUMO

We report experimental realization of a 5-layer three-dimensional (3D) metallic photonic crystal structure that exhibits characteristics of a 3D complete bandgap extending from near-infrared down to visible wavelength at around 650 nm. The structure also exhibits a new kind of non-localized passband mode in the infrared far beyond its metallic waveguide cutoff. This new passband mode is drastically different from the well-known defect mode due to point or line defects. Three-dimensional finite-difference-time-domain simulations were carried out and the results suggest that the passband modes are due to intra-structure resonances.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...