Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Biotechnol ; 70: 15-22, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33038780

RESUMO

Modern agriculture and food production systems are facing increasing pressures from climate change, land and water availability, and, more recently, a pandemic. These factors are threatening the environmental and economic sustainability of current and future food supply systems. Scientific and technological innovations are needed more than ever to secure enough food for a fast-growing global population. Scientific advances have led to a better understanding of how various components of the agricultural system interact, from the cell to the field level. Despite incredible advances in genetic tools over the past few decades, our ability to accurately assess crop status in the field, at scale, has been severely lacking until recently. Thanks to recent advances in remote sensing and Artificial Intelligence (AI), we can now quantify field scale phenotypic information accurately and integrate the big data into predictive and prescriptive management tools. This review focuses on the use of recent technological advances in remote sensing and AI to improve the resilience of agricultural systems, and we will present a unique opportunity for the development of prescriptive tools needed to address the next decade's agricultural and human nutrition challenges.


Assuntos
Inteligência Artificial , Tecnologia de Sensoriamento Remoto , Agricultura , Mudança Climática , Abastecimento de Alimentos , Humanos
2.
Plant Direct ; 4(5): e00223, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32399510

RESUMO

Unoccupied aerial systems (UAS) were used to phenotype growth trajectories of inbred maize populations under field conditions. Three recombinant inbred line populations were surveyed on a weekly basis collecting RGB images across two irrigation regimens (irrigated and non-irrigated/rain fed). Plant height, estimated by the 95th percentile (P95) height from UAS generated 3D point clouds, exceeded 70% correlation (r) to manual ground truth measurements and 51% of experimental variance was explained by genetics. The Weibull sigmoidal function accurately modeled plant growth (R 2: >99%; RMSE: <4 cm) from P95 genetic means. The mean asymptote was strongly correlated (r 2 = 0.66-0.77) with terminal plant height. Maximum absolute growth rates (mm/day) were weakly correlated with height and flowering time. The average inflection point ranged from 57 to 60 days after sowing (DAS) and was correlated with flowering time (r 2 = 0.45-0.68). Functional growth parameters (asymptote, inflection point, growth rate) alone identified 34 genetic loci, each explaining 3-15% of total genetic variation. Plant height was estimated at one-day intervals to 85 DAS, identifying 58 unique temporal quantitative trait loci (QTL) locations. Genomic hotspots on chromosomes 1 and 3 indicated chromosomal regions associated with functional growth trajectories influencing flowering time, growth rate, and terminal growth. Temporal QTL demonstrated unique dynamic expression patterns not previously observable, and no QTL were significantly expressed throughout the entire growing season. UAS technologies improved phenotypic selection accuracy and permitted monitoring traits on a temporal scale previously infeasible using manual measurements, furthering understanding of crop development and biological trajectories.

3.
Sensors (Basel) ; 18(12)2018 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-30469545

RESUMO

Continuing population growth will result in increasing global demand for food and fiber for the foreseeable future. During the growing season, variability in the height of crops provides important information on plant health, growth, and response to environmental effects. This paper indicates the feasibility of using structure from motion (SfM) on images collected from 120 m above ground level (AGL) with a fixed-wing unmanned aerial vehicle (UAV) to estimate sorghum plant height with reasonable accuracy on a relatively large farm field. Correlations between UAV-based estimates and ground truth were strong on all dates (R² > 0.80) but are clearly better on some dates than others. Furthermore, a new method for improving UAV-based plant height estimates with multi-level ground control points (GCPs) was found to lower the root mean square error (RMSE) by about 20%. These results indicate that GCP-based height calibration has a potential for future application where accuracy is particularly important. Lastly, the image blur appeared to have a significant impact on the accuracy of plant height estimation. A strong correlation (R² = 0.85) was observed between image quality and plant height RMSE and the influence of wind was a challenge in obtaining high-quality plant height data. A strong relationship (R² = 0.99) existed between wind speed and image blurriness.

4.
Sensors (Basel) ; 15(2): 2593-613, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25625907

RESUMO

Pure surface materials denoted by endmembers play an important role in hyperspectral processing in various fields. Many endmember extraction algorithms (EEAs) have been proposed to find appropriate endmember sets. Most studies involving the automatic extraction of appropriate endmembers without a priori information have focused on N-FINDR. Although there are many different versions of N-FINDR algorithms, computational complexity issues still remain and these algorithms cannot consider the case where spectrally mixed materials are extracted as final endmembers. A sequential endmember extraction-based algorithm may be more effective when the number of endmembers to be extracted is unknown. In this study, we propose a simple but accurate method to automatically determine the optimal endmembers using such a method. The proposed method consists of three steps for determining the proper number of endmembers and for removing endmembers that are repeated or contain mixed signatures using the Root Mean Square Error (RMSE) images obtained from Iterative Error Analysis (IEA) and spectral discrimination measurements. A synthetic hyperpsectral image and two different airborne images such as Airborne Imaging Spectrometer for Application (AISA) and Compact Airborne Spectrographic Imager (CASI) data were tested using the proposed method, and our experimental results indicate that the final endmember set contained all of the distinct signatures without redundant endmembers and errors from mixed materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...