Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 9(1): 4532, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30382094

RESUMO

The molecular chaperone Hsp90 is critical for the maintenance of cellular homeostasis and represents a promising drug target. Despite increasing knowledge on the structure of Hsp90, the molecular basis of substrate recognition and pro-folding by Hsp90/co-chaperone complexes remains unknown. Here, we report the solution structures of human full-length Hsp90 in complex with the PPIase FKBP51, as well as the 280 kDa Hsp90/FKBP51 complex bound to the Alzheimer's disease-related protein Tau. We reveal that the FKBP51/Hsp90 complex, which synergizes to promote toxic Tau oligomers in vivo, is highly dynamic and stabilizes the extended conformation of the Hsp90 dimer resulting in decreased Hsp90 ATPase activity. Within the ternary Hsp90/FKBP51/Tau complex, Hsp90 serves as a scaffold that traps the PPIase and nucleates multiple conformations of Tau's proline-rich region next to the PPIase catalytic pocket in a phosphorylation-dependent manner. Our study defines a conceptual model for dynamic Hsp90/co-chaperone/client recognition.


Assuntos
Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/toxicidade , Proteínas de Ligação a Tacrolimo/química , Proteínas de Ligação a Tacrolimo/toxicidade , Proteínas tau/química , Proteínas tau/toxicidade , Biocatálise/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , Proteínas de Ligação a Tacrolimo/metabolismo , Proteínas tau/metabolismo
2.
Nat Struct Mol Biol ; 24(4): 407-413, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28218749

RESUMO

The critical toxic species in over 40 human diseases are misfolded proteins. Their interaction with molecular chaperones such as Hsp90, which preferentially interacts with metastable proteins, is essential for the blocking of disease progression. Here we used nuclear magnetic resonance (NMR) spectroscopy to determine the three-dimensional structure of the misfolded cytotoxic monomer of the amyloidogenic human protein transthyretin, which is characterized by the release of the C-terminal ß-strand and perturbations of the A-B loop. The misfolded transthyretin monomer, but not the wild-type protein, binds to human Hsp90. In the bound state, the Hsp90 dimer predominantly populates an open conformation, and transthyretin retains its globular structure. The interaction surface for the transthyretin monomer comprises the N-terminal and middle domains of Hsp90 and overlaps with that of the Alzheimer's-disease-related protein tau. Taken together, the data suggest that Hsp90 uses a mechanism for the recognition of aggregation-prone proteins that is largely distinct from those of other Hsp90 clients.


Assuntos
Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Pré-Albumina/química , Pré-Albumina/metabolismo , Dobramento de Proteína , Humanos , Imageamento Tridimensional , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Biológicos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Proteínas tau/química , Proteínas tau/metabolismo
3.
Ann Med Surg (Lond) ; 12: 88-89, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27942381

RESUMO

Problem-based learning (PBL) has been a concept in existence for decades yet its implementation in medical student education is limited. Considering the nature of a physician's work, PBL is a logical step towards developing students' abilities to synthesize and integrate foundational concepts into clinical medicine. Harvard's recently redesigned Pathways curriculum has shifted almost exclusively towards PBL in its one-year preclinical curriculum. This piece provides my thoughts, both derived from my own reflections as well as conversations and observations of my peers, on the effectiveness, advantages, and disadvantages of a PBL curriculum. All in all, the feelings of my peers and I regarding PBL has been overwhelmingly positive despite potential areas of improvement and continued fine-tuning.

4.
PLoS One ; 11(1): e0146493, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26735300

RESUMO

The extrinsic apoptotic pathway is initiated by binding of a Fas ligand to the ectodomain of the surface death receptor Fas protein. Subsequently, the intracellular death domain of Fas (FasDD) and that of the Fas-associated protein (FADD) interact to form the core of the death-inducing signaling complex (DISC), a crucial step for activation of caspases that induce cell death. Previous studies have shown that calmodulin (CaM) is recruited into the DISC in cholangiocarcinoma cells and specifically interacts with FasDD to regulate the apoptotic/survival signaling pathway. Inhibition of CaM activity in DISC stimulates apoptosis significantly. We have recently shown that CaM forms a ternary complex with FasDD (2:1 CaM:FasDD). However, the molecular mechanism by which CaM binds to two distinct FasDD motifs is not fully understood. Here, we employed mass spectrometry, nuclear magnetic resonance (NMR), biophysical, and biochemical methods to identify the binding regions of FasDD and provide a molecular basis for the role of CaM in Fas-mediated apoptosis. Proteolytic digestion and mass spectrometry data revealed that peptides spanning residues 209-239 (Fas-Pep1) and 251-288 (Fas-Pep2) constitute the two CaM-binding regions of FasDD. To determine the molecular mechanism of interaction, we have characterized the binding of recombinant/synthetic Fas-Pep1 and Fas-Pep2 peptides with CaM. Our data show that both peptides engage the N- and C-terminal lobes of CaM simultaneously. Binding of Fas-Pep1 to CaM is entropically driven while that of Fas-Pep2 to CaM is enthalpically driven, indicating that a combination of electrostatic and hydrophobic forces contribute to the stabilization of the FasDD-CaM complex. Our data suggest that because Fas-Pep1 and Fas-Pep2 are involved in extensive intermolecular contacts with the death domain of FADD, binding of CaM to these regions may hinder its ability to bind to FADD, thus greatly inhibiting the initiation of apoptotic signaling pathway.


Assuntos
Calmodulina/metabolismo , Proteína de Domínio de Morte Associada a Fas/metabolismo , Receptor fas/metabolismo , Sequência de Aminoácidos , Apoptose , Sítios de Ligação , Calmodulina/química , Linhagem Celular Tumoral , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Dicroísmo Circular , Proteína de Domínio de Morte Associada a Fas/química , Proteína de Domínio de Morte Associada a Fas/genética , Humanos , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Peptídeos/análise , Ligação Proteica , Estrutura Terciária de Proteína , Proteólise , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Transdução de Sinais , Espectrometria de Massas em Tandem , Termodinâmica , Receptor fas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...