Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 18(10): 7411-7423, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38412617

RESUMO

The ability to control and manipulate semiconductor/bio interfaces is essential to enable biological nanofabrication pathways and bioelectronic devices. Traditional surface functionalization methods, such as self-assembled monolayers (SAMs), provide limited customization for these interfaces. Polymer brushes offer a wider range of chemistries, but choices that maintain compatibility with both lithographic patterning and biological systems are scarce. Here, we developed a class of bioinspired, sequence-defined polymers, i.e., polypeptoids, as tailored polymer brushes for surface modification of semiconductor substrates. Polypeptoids featuring a terminal hydroxyl (-OH) group are designed and synthesized for efficient melt grafting onto the native oxide layer of Si substrates, forming ultrathin (∼1 nm) monolayers. By programming monomer chemistry, our polypeptoid brush platform offers versatile surface modification, including adjustments to surface energy, passivation, preferential biomolecule attachment, and specific biomolecule binding. Importantly, the polypeptoid brush monolayers remain compatible with electron-beam lithographic patterning and retain their chemical characteristics even under harsh lithographic conditions. Electron-beam lithography is used over polypeptoid brushes to generate highly precise, binary nanoscale patterns with localized functionality for the selective immobilization (or passivation) of biomacromolecules, such as DNA origami or streptavidin, onto addressable arrays. This surface modification strategy with bioinspired, sequence-defined polypeptoid brushes enables monomer-level control over surface properties with a large parameter space of monomer chemistry and sequence and therefore is a highly versatile platform to precisely engineer semiconductor/bio interfaces for bioelectronics applications.


Assuntos
Polímeros , Polímeros/química , Adsorção , Propriedades de Superfície
2.
Joule ; 7(1): 95-111, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-37034575

RESUMO

High capacity polymer dielectrics that operate with high efficiencies under harsh electrification conditions are essential components for advanced electronics and power systems. It is, however, fundamentally challenging to design polymer dielectrics that can reliably withstand demanding temperatures and electric fields, which necessitate the balance of key electronic, electrical and thermal parameters. Herein, we demonstrate that polysulfates, synthesized by sulfur(VI) fluoride exchange (SuFEx) catalysis, another near-perfect click chemistry reaction, serve as high-performing dielectric polymers that overcome such bottlenecks. Free-standing polysulfate thin films from convenient solution processes exhibit superior insulating properties and dielectric stability at elevated temperatures, which are further enhanced when ultrathin (~5 nm) oxide coatings are deposited by atomic layer deposition. The corresponding electrostatic film capacitors display high breakdown strength (>700 MV m-1) and discharged energy density of 8.64 J cm-3 at 150 °C, outperforming state-of-the-art free-standing capacitor films based on commercial and synthetic dielectric polymers and nanocomposites.

3.
Polymers (Basel) ; 15(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36771799

RESUMO

Block copolymers (BCPs) self-assemble into intricate nanostructures that enhance a multitude of advanced applications in semiconductor processing, membrane science, nanopatterned coatings, nanocomposites, and battery research. Kinetics and thermodynamics of self-assembly are crucial considerations in controlling the nanostructure of BCP thin films. The equilibrium structure is governed by a molecular architecture and the chemistry of its repeat units. An enormous library of materials has been synthesized and they naturally produce a rich equilibrium phase diagram. Non-equilibrium phases could potentially broaden the structural diversity of BCPs and relax the synthetic burden of creating new molecules. Furthermore, the reliance on synthesis could be complicated by the scalability and the materials compatibility. Non-equilibrium phases in BCPs, however, are less explored, likely due to the challenges in stabilizing the metastable structures. Over the past few decades, a variety of processing techniques were introduced that influence the phase transformation of BCPs to achieve a wide range of morphologies. Nonetheless, there is a knowledge gap on how different processive pathways can induce and control the non-equilibrium phases in BCP thin films. In this review, we focus on different solvent-induced and thermally induced processive pathways, and their potential to control the non-equilibrium phases with regards to their unique aspects and advantages. Furthermore, we elucidate the limitations of these pathways and discuss the potential avenues for future investigations.

4.
ACS Appl Mater Interfaces ; 15(1): 2020-2029, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36534025

RESUMO

We report a method for the directed self-assembly (DSA) of block copolymers (BCPs) in which a first BCP film deploys homopolymer brushes, or "inks", that sequentially graft onto the substrate's surface via the interpenetration of polymer molecules during the thermal annealing of the polymer film on top of existing polymer brushes. By selecting polymer "inks" with the desired chemistry and appropriate relative molecular weights, it is possible to use brush interpenetration as a powerful technique to generate self-registered chemical contrast patterns at the same frequency as that of the domains of the BCP. The result is a process with a higher tolerance to dimensional and chemical imperfections in the guiding patterns, which we showcase by implementing DSA using homopolymer brushes for the guiding features as opposed to more robust cross-linkable mats. We find that the use of "inks" does not compromise the line width roughness, and the quality of the DSA as a lithographic mask is verified by implementing a robust "dry lift-off" pattern transfer.

5.
ACS Appl Mater Interfaces ; 14(12): 14579-14587, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35311286

RESUMO

Thermal percolation in polymer nanocomposites─the rapid increase in thermal transport due to the formation of networks among fillers─is the subject of great interest in thermal management ranging from general utility in multifunctional nanocomposites to high-conductivity applications such as thermal interface materials. However, It remains a challenging subject encompassing both experimental and modeling hurdles. Successful reports of thermal percolation are exclusively found in high-aspect-ratio, conductive fillers such as graphene, albeit at filler loadings significantly higher than the electrical percolation threshold. This anomaly was attributed to the lower filler-matrix thermal conductivity contrast ratio kf/km ∼104 compared to electrical conductivity ∼1012-1016. In a randomly dispersed composite, the effect of a low contrast ratio is further accentuated by uncertainties in the morphology of the percolating network and presence of other phases such as disconnected aggregates and colloidal dispersions. Thus, the general properties of percolating networks are convoluted as they lack a defined structure. In contrast, a prototypical system with controllable nanofiller placement enables the elucidation of structure-property relations such as filler size, loading, and assembly. Using self-assembled nanocomposites with a controlled 1,2,3-dimension nanoparticle (NP) arrangement, we demonstrate that thermal percolation can be achieved in spite of using spherical, nonconductive fillers (kf/km ∼60) at a low volume fraction (9 vol %). We observe that the effects of volume fraction, interfacial thermal resistance, and filler conductivity on thermal conductivity depart from effective medium approximations. Most notably, contrast ratio plays a minor role in thermal percolation above kf/km ∼60─a common range for semiconducting nanoparticles/polymer ratios. Our findings bring new perspectives and insights to thermal percolation in nanocomposites, where the limits in contrast ratio, interfacial thermal conductance, and filler size are established.

6.
Angew Chem Int Ed Engl ; 60(11): 5928-5935, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33381886

RESUMO

Undercooling metals relies on frustration of liquid-solid transition mainly by an increase in activation energy. Passivating oxide layers are a way to isolate the core from heterogenous nucleants (physical barrier) while also raising the activation energy (thermodynamic/kinetic barrier) needed for solidification. The latter is due to composition gradients (speciation) that establishes a sharp chemical potential gradient across the thin (0.7-5 nm) oxide shell, slowing homogeneous nucleation. When this speciation is properly tuned, the oxide layer presents a previously unaccounted for interfacial tension in the overall energy landscape of the relaxing material. We demonstrate that 1) the integrity of the passivation oxide is critical in stabilizing undercooled particle, a key tenet in developing heat-free solders, 2) inductive effects play a critical role in undercooling, and 3) the magnitude of the influence of the passivating oxide can be larger than size effects in undercooling.

7.
ACS Macro Lett ; 9(7): 1060-1066, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35648616

RESUMO

Hierarchical assemblies from block copolymer (BCP)-based supramolecules have shown immense potential as programmable materials owing to their versatility for incorporating functional molecules and provide access to arrays of hierarchical structures. However, there remains a knowledge gap on the formation of the supramolecule in solution. Here, we applied NMR techniques to investigate the solution-phase behavior of the most studied supramolecular systems, polystyrene-block-poly(4-vinylpyridine)(3-pentadecylphenol) (PS-b-P4VP(PDP)r). The results show that the supramolecule likely adopts a coil-comb conformation, despite the small molecule's (PDP) rapid exchange between the bonded and free states. The exchange rate (>104 s-1) exceeds the NMR time scale at the frequency of interest. The supramolecules form under dilute conditions (∼2 vol %) and are attributed to the enthalpic gain of the hydrogen bonding between the PDP and 4VP. As the solute concentration increases (>10 vol %), the supramolecule forms micelle-like aggregates with PDP accumulated within the comb-block's pervaded volume based on analysis of the apparent molecular weight, viscosity, and chain dynamics. This work sheds light on the long-standing question regarding the evolution of the constituents in the BCP-based supramolecule in solution and provides valuable guidance toward their solution-based processing and morphological control.

8.
Langmuir ; 35(43): 13853-13859, 2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31585036

RESUMO

We have developed a new spray-based method for characterizing surface energies of planar, porous substrates. Distinct spray modes (electrospray versus electrostatic spray), from the porous substrates, occur in the presence of an applied DC potential after wetting with solvents of different surface tension. The ion current resulting from the spray process is maximized when the surface energy of the porous substrate approaches the surface tension of the wetting solvent. By monitoring the selected ion current (e.g., benzoylecgonine, m/z 290 → 168) with a mass spectrometer or the total ion current with an ammeter, we determined the solvent surface tension yielding the maximum ion current to indicate the surface energy of the solid. Detailed evaluations using polymeric substrates of known surface energies enabled effective calibration of the approach that resulted in the correct estimation of the surface energy of hydrophobic paper substrates prepared by gas-phase silanization. A three-parameter empirical model suggests that the experimentally observed ion current profile is governed by differential partitioning of analyte controlled by the interfacial forces between the wetting solvent and the porous substrate.

9.
Nanoscale ; 11(29): 14060-14069, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31313799

RESUMO

Coordination polymers are ideal synthons in creating high aspect ratio nanostructures, however, conventional synthetic methods are often restricted to batch-wise and costly processes. Herein, we demonstrate a non-traditional, frugal approach to synthesize 1D coordination polymers by in situ etching of zerovalent metal particle precursors. This procedure is denoted as the heterogeneous metal/ligand reaction and was demonstrated on Group 13 metals as a proof of concept. Simple carboxylic acids supply the etchant protons and ligands for metal ions (conjugate base) in a 1 : 1 ratio. This scalable reaction produces a 1D polymer that assembles into high-aspect ratio 'nanobeams'. We demonstrate control over crystal structure and morphology by tuning the: (i) metal center, (ii) stoichiometry and (iii) structure of the ligands. This work presents a general scalable method for continuous, heat free and water-based coordination polymer synthesis.

10.
Front Chem ; 6: 338, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30246006

RESUMO

Fibrous cellulosic materials have been used as templates for material synthesis or organization via thermal degradation of the cellulose. Most of these methods, however, fail to exploit fiber organization, in part due to loss of structure with processing. Herein, we demonstrate that chemi- and physi-sorbed modifiers of cellulose alters the thermal degradation mechanism allowing for controlled deposition of oxide and carbon (incomplete combustion) along the original paper fiber network. We demonstrate that the degradation of the cellulose fibers depends on the amount of physisorbed material due, in part, to effect on the propagation of the ignition event. From the distribution of the residual elements and shape of the deposits, we can infer that the thermal degradation process depends on the nature, and concentration, of filler(s) or occluded.

11.
ACS Nano ; 12(5): 4744-4753, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29648786

RESUMO

Droplets capture an environment-dictated equilibrium state of a liquid material. Equilibrium, however, often necessitates nanoscale interface organization, especially with formation of a passivating layer. Herein, we demonstrate that this kinetics-driven organization may predispose a material to autonomous thermal-oxidative composition inversion (TOCI) and texture reconfiguration under felicitous choice of trigger. We exploit inherent structural complexity, differential reactivity, and metastability of the ultrathin (∼0.7-3 nm) passivating oxide layer on eutectic gallium-indium (EGaIn, 75.5% Ga, 24.5% In w/w) core-shell particles to illustrate this approach to surface engineering. Two tiers of texture can be produced after ca. 15 min of heating, with the first evolution showing crumpling, while the second is a particulate growth above the first uniform texture. The formation of tier 1 texture occurs primarily because of diffusion-driven oxide buildup, which, as expected, increases stiffness of the oxide layer. The surface of this tier is rich in Ga, akin to the ambient formed passivating oxide. Tier 2 occurs at higher temperature because of thermally triggered fracture of the now thick and stiff oxide shell. This process leads to inversion in composition of the surface oxide due to higher In content on the tier 2 features. At higher temperatures (≥800 °C), significant changes in composition lead to solidification of the remaining material. Volume change upon oxidation and solidification leads to a hollow structure with a textured surface and faceted core. Controlled thermal treatment of liquid EGaIn therefore leads to tunable surface roughness, composition inversion, increased stiffness in the oxide shell, or a porous solid structure. We infer that this tunability is due to the structure of the passivating oxide layer that is driven by differences in reactivity of Ga and In and requisite enrichment of the less reactive component at the metal-oxide interface.

12.
Macromol Rapid Commun ; 39(8): e1800026, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29516614

RESUMO

A facile method is reported for rapid, room-temperature synthesis of block copolymers (BCP) of complex morphology and hence nontraditional spherical assembly. The use of solvated electrons generates radical anions on olefinic monomers, and with a felicitous choice of monomer pairs, this species will propagate bimechanistically (via radical and the anion) to form BCPs. Molecular weight of the obtained BCP range from Mw = 97 000-404 000 g mol-1 (polydispersity index, PDI = 1.4-3.0) depending on monomer pairs. The composition of the blocks can be controlled by changing monomer ratio, with the caveat that yield is affected. Detailed characterization by 2D nuclear magnetic resonance spectroscopy, differential scanning calorimetry (DSC), and analysis of the mechanisms involved indicate the structure of obtained block copolymers to be at least a triblock with a complex central unit. Evaluating trends in the Hammett parameter segregates monomer pairs into "armed and disarmed" groups with respect to radical or anionic polymerization akin to oligosaccharides synthesis.


Assuntos
Substâncias Macromoleculares/química , Substâncias Macromoleculares/síntese química , Polímeros/química , Polímeros/síntese química , Varredura Diferencial de Calorimetria , Estrutura Molecular , Polimerização , Temperatura
13.
Phys Chem Chem Phys ; 20(7): 4864-4878, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29384159

RESUMO

Charge transport across large area molecular tunneling junctions is widely studied due to its potential in the development of quantum electronic devices. Large area junctions based on eutectic gallium indium (used in the form of a conical tip top electrode) have emerged as a reliable platform for delineating structure-property relationships. Discrepancies, however, arise from different tip-morphologies and fabrication techniques. It can be, therefore, challenging to make reliable conclusions based on molecular features. Of particular note is the discrepancy between the behaviors of hydrocarbons containing odd and even numbered carbons across different EGaIn electrodes. Moreover, inconsistencies in tip roughness and oxide thickness can lead to more than a 100× increase in current densities with narrow distribution in data. Besides effects on the precision vs. accuracy of data, a theoretically predicted length-dependent limit to observation of the odd-even effect has not been realized experimentally. We developed a method to chemically polish the EGaIn tip to allow formation of smooth conformal contact due to re-establishment of liquid character at the point of contact though tension-driven reconstruction of a thin oxide layer. To evaluate the polished tip, we measured charge transport behavior across n-alkanethiolate SAMs and observed good correlation in the odd-even oscillation behavior to that observed from wetting studies. Since these molecules are homologues of each other, only differing in the orientation of the terminal CH2CH3 moiety, the odd-even effects are governed by orientation induced differences in the absences of SAM (gauche) defects. Comparison of obtained data with the literature shows significant difference between odd-numbered SAMs across Ag and Au.

14.
ACS Omega ; 3(2): 2049-2057, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-31458514

RESUMO

This article presents a magnetically actuated two-way, three-position (+, 0, -), paper-based microfluidic valve that includes a neutral position (0)-the first of its kind. The system is highly robust, customizable, and fully automated. The advent of a neutral position and the ability to precisely control switching frequencies establish a new platform for highly controlled fluid flows in paper-based wicking microfluidic devices. The potential utility of these valves is demonstrated in automated, programmed, patterning of dyed liquids in a wicking device akin to a colorimetric assay but with a programmed fluid/reagent delivery. These valves are fabricated using facile methods and thus remain cost-effective for adoption into affordable point-of-care/bioanalytical devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...