Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 924: 171703, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38490424

RESUMO

Healthcare-associated infections (HAIs) pose significant risks to pediatric patients in outpatient settings. To prevent HAIs, understanding the sources and transmission routes of pathogenic microorganisms is crucial. This study aimed to identify the sources of opportunistic bacterial pathogens (OBPs) in pediatric outpatient settings and determine their transmission routes. Furthermore, assessing the public health risks associated with the core OBPs is important. We collected 310 samples from various sites in pediatric outpatient areas and quantified the bacteria using qPCR and CFU counting. We also performed 16S rRNA gene and single-bacterial whole-genome sequencing to profile the transmission routes and antibiotic resistance characteristics of OBPs. We observed significant variations in microbial diversity and composition among sampling sites in pediatric outpatient settings, with active communication of the microbiota between linked areas. We found that the primary source of OBPs in multi-person contact areas was the hand surface, particularly in pediatric patients. Five core OBPs, Staphylococcus epidermidis, Acinetobacter baumannii, Pseudomonas aeruginosa, Streptococcus mitis, and Streptococcus oralis, were mainly derived from pediatric patients and spread into the environment. These OBPs accumulated at multi-person contact sites, resulting in high microbial diversity in these areas. Transmission tests confirmed the challenging spread of these pathogens, with S. epidermidis transferring from the patient's hand to the environment, leading to an increased abundance and emergence of related strains. More importantly, S. epidermidis isolated from pediatric patients carried more antibiotic-resistance genes. In addition, two strains of multidrug-resistant A. baumannii were isolated from both a child and a parent, confirming the transmission of the five core OBPs centered around pediatric patients and multi-person contact areas. Our results demonstrate that pediatric patients serve as a significant source of OBPs in pediatric outpatient settings. OBPs carried by pediatric patients pose a high public health risk. To effectively control HAIs, increasing hand hygiene measures in pediatric patients and enhancing the frequency of disinfection in multi-person contact areas remains crucial. By targeting these preventive measures, the spread of OBPs can be reduced, thereby mitigating the risk of HAIs in pediatric outpatient settings.


Assuntos
Antibacterianos , Infecção Hospitalar , Humanos , Criança , RNA Ribossômico 16S , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/microbiologia , Infecção Hospitalar/prevenção & controle , Staphylococcus epidermidis , Saúde Pública , Testes de Sensibilidade Microbiana
2.
Microbiome ; 11(1): 157, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37482605

RESUMO

BACKGROUND: Secondary bacterial infections and pneumonia are major mortality causes of respiratory viruses, and the disruption of the upper respiratory tract (URT) microbiota is a crucial component of this process. However, whether this URT dysbiosis associates with the viral species (in other words, is viral type-specific) is unclear. RESULTS: Here, we recruited 735 outpatients with upper respiratory symptoms, identified the infectious virus types in 349 participants using multiplex RT-PCR, and profiled their upper respiratory microbiome using the 16S ribosomal RNA gene and metagenomic gene sequencing. Microbial and viral data were subsequently used as inputs for multivariate analysis aimed at revealing viral type-specific disruption of the upper respiratory microbiota. We found that the oropharyngeal microbiota shaped by influenza A virus (FluA), influenza B virus (FluB), respiratory syncytial virus (RSV), and human rhinovirus (HRV) infections exhibited three distinct patterns of dysbiosis, and Veillonella was identified as a prominent biomarker for any type of respiratory viral infections. Influenza virus infections are significantly correlated with increased oropharynx microbiota diversity and enrichment of functional metabolic pathways such as L-arginine biosynthesis and tetracycline resistance gene tetW. We used the GRiD algorithm and found the predicted growth rate of common respiratory pathogens was increased upon influenza virus infection, while commensal bacteria, such as Streptococcus infantis and Streptococcus mitis, may act as a colonization resistance to the overgrowth of these pathogens. CONCLUSIONS: We found that respiratory viral infections are linked with viral type-specific disruption of the upper respiratory microbiota, particularly, influenza infections uniquely associated with increased microbial diversity and growth rates of specific pathogens in URT. These findings are essential for clarifying the differences and dynamics of respiratory microbiota in healthy participants and acute respiratory viral infections, which contribute to elucidating the pathogenesis of viral-host-bacterial interactions to provide insights into future studies on effective prevention and treatment of respiratory tract infections. Video Abstract.


Assuntos
Coinfecção , Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Infecções Respiratórias , Humanos , Disbiose/microbiologia , Orofaringe/microbiologia , Bactérias/genética
3.
Adv Sci (Weinh) ; 9(32): e2203115, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36031410

RESUMO

The oral and upper respiratory tracts are closely linked anatomically and physiologically with the lower respiratory tract and lungs, and the influence of oral and upper respiratory microbes on the lung microbiota is increasingly being recognized. However, the ecological process and individual heterogeneity of the oral and upper respiratory tract microbes shaping the lung microbiota remain unclear owing to the lack of controlled analyses with sufficient sample sizes. Here, the microbiomes of saliva, nasal cavity, oropharyngeal area, and bronchoalveolar lavage samples are profiled and the shaping process of multisource microbes on the lung microbiota is measured. It is found that oral and nasal microbial inputs jointly shape the lung microbiota by occupying different ecological niches. It is also observed that the spread of oral microbes to the lungs is heterogeneous, with more oral microbes entering the lungs being associated with decreased lung function and increased lung proinflammatory cytokines. These results depict the external shaping process of lung microbiota and indicate the great value of oral samples, such as saliva, in monitoring and assessing lung microbiota status in clinical settings.


Assuntos
Microbiota , Líquido da Lavagem Broncoalveolar , Microbiota/fisiologia , Pulmão , Lavagem Broncoalveolar/métodos , Nível de Saúde
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...