Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Psychiatry Clin Neurosci ; 76(6): 235-245, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35235255

RESUMO

AIM: The study investigated the electroencephalography (EEG) functional connectivity (FC) profiles during rest and tasks of young children with attention deficit hyperactivity disorder (ADHD) and typical development (TD). METHODS: In total, 78 children (aged 5-7 years) were enrolled in this study; 43 of them were diagnosed with ADHD and 35 exhibited TD. Four FC metrics, coherence, phase-locking value (PLV), pairwise phase consistency, and phase lag index, were computed for feature selection to discriminate ADHD from TD. RESULTS: The support vector machine classifier trained by phase-locking value (PLV) features yielded the best performance to differentiate the ADHD from the TD group and was used for further analysis. In comparing PLVs with the TD group at rest, the ADHD group exhibited significantly lower values on left intrahemispheric long interelectrode lower-alpha and beta as well as frontal interhemispheric beta frequency bands. However, the ADHD group showed higher values of central interhemispheric PLVs on the theta, higher-alpha, and beta bands. Regarding PLV alterations within resting and task conditions, left intrahemispheric long interelectrode beta PLVs declined from rest to task in the TD group, but the alterations did not differ in the ADHD group. Negative correlations were observed between frontal interhemispheric beta PLVs and the Disruptive Behavior Disorder Rating Scale as rated by teachers. CONCLUSIONS: These results, which complement the findings of other sparse studies that have investigated task-related brain FC dynamics, particularly in young children with ADHD, can provide clinicians with significant and interpretable neural biomarkers for facilitating the diagnosis of ADHD.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Encéfalo/diagnóstico por imagem , Criança , Pré-Escolar , Eletroencefalografia/métodos , Humanos , Máquina de Vetores de Suporte
2.
J Neural Eng ; 18(6)2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34706357

RESUMO

Objective. Hyperscanning is an emerging technology that concurrently scans the neural dynamics of multiple individuals to study interpersonal interactions. In particular, hyperscanning with electroencephalography (EEG) is increasingly popular owing to its mobility and its ability to allow studying social interactions in naturalistic settings at the millisecond scale.Approach.To align multiple EEG time series with sophisticated event markers in a single time domain, a precise and unified timestamp is required for stream synchronization. This study proposes a clock-synchronized method that uses a custom-made RJ45 cable to coordinate the sampling between wireless EEG amplifiers to prevent incorrect estimation of interbrain connectivity due to asynchronous sampling. In this method, analog-to-digital converters are driven by the same sampling clock. Additionally, two clock-synchronized amplifiers leverage additional radio frequency channels to keep the counter of their receiving dongles updated, which guarantees that binding event markers received by the dongle with the EEG time series have the correct timestamp.Main results.The results of two simulation experiments and one video gaming experiment reveal that the proposed method ensures synchronous sampling in a system with multiple EEG devices, achieving near-zero phase lag and negligible amplitude difference between the signals.Significance.According to all of the signal-similarity metrics, the suggested method is a promising option for wireless EEG hyperscanning and can be utilized to precisely assess the interbrain couplings underlying social-interaction behaviors.


Assuntos
Encéfalo , Eletroencefalografia , Amplificadores Eletrônicos , Mapeamento Encefálico/métodos , Eletroencefalografia/métodos , Humanos , Relações Interpessoais
3.
Sensors (Basel) ; 16(11)2016 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-27809260

RESUMO

This study investigates alternative material compositions for flexible silicone-based dry electroencephalography (EEG) electrodes to improve the performance lifespan while maintaining high-fidelity transmission of EEG signals. Electrode materials were fabricated with varying concentrations of silver-coated silica and silver flakes to evaluate their electrical, mechanical, and EEG transmission performance. Scanning electron microscope (SEM) analysis of the initial electrode development identified some weak points in the sensors' construction, including particle pull-out and ablation of the silver coating on the silica filler. The newly-developed sensor materials achieved significant improvement in EEG measurements while maintaining the advantages of previous silicone-based electrodes, including flexibility and non-toxicity. The experimental results indicated that the proposed electrodes maintained suitable performance even after exposure to temperature fluctuations, 85% relative humidity, and enhanced corrosion conditions demonstrating improvements in the environmental stability. Fabricated flat (forehead) and acicular (hairy sites) electrodes composed of the optimum identified formulation exhibited low impedance and reliable EEG measurement; some initial human experiments demonstrate the feasibility of using these silicone-based electrodes for typical lab data collection applications.

4.
IEEE Trans Neural Syst Rehabil Eng ; 24(7): 806-13, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26780814

RESUMO

Potable electroencephalography (EEG) devices have become critical for important research. They have various applications, such as in brain-computer interfaces (BCI). Numerous recent investigations have focused on the development of dry sensors, but few concern the simultaneous attachment of high-density dry sensors to different regions of the scalp to receive qualified EEG signals from hairy sites. An inflatable and wearable wireless 32-channel EEG device was designed, prototyped, and experimentally validated for making EEG signal measurements; it incorporates spring-loaded dry sensors and a novel gasbag design to solve the problem of interference by hair. The cap is ventilated and incorporates a circuit board and battery with a high-tolerance wireless (Bluetooth) protocol and low power consumption characteristics. The proposed system provides a 500/250 Hz sampling rate, and 24 bit EEG data to meet the BCI system data requirement. Experimental results prove that the proposed EEG system is effective in measuring audio event-related potential, measuring visual event-related potential, and rapid serial visual presentation. Results of this work demonstrate that the proposed EEG cap system performs well in making EEG measurements and is feasible for practical applications.


Assuntos
Redes de Comunicação de Computadores/instrumentação , Fontes de Energia Elétrica , Eletrodos , Eletroencefalografia/instrumentação , Monitorização Ambulatorial/instrumentação , Tecnologia sem Fio/instrumentação , Amplificadores Eletrônicos , Conversão Análogo-Digital , Desenho de Equipamento , Análise de Falha de Equipamento , Estudos de Viabilidade , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador/instrumentação
5.
PLoS One ; 7(12): e51606, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23272122

RESUMO

MicroRNAs (miRNAs) play important roles in modulating the neoplastic process of cancers including head and neck squamous cell carcinoma (HNSCC). A genetic polymorphism (rs2292832, C>T) has been recently identified in the precursor of miR-149; nevertheless its clinicopathological implications remain obscure. In this study, we showed that miR-149 is down-regulated in HNSCC compared to normal mucosa and this is associated with a poorer patient survival. In addition, HNSCC patients with the T/T genotype have more advanced tumors and a worse prognosis. Multivariate analysis indicated that patients carried the T/T genotype have a 2.81-fold (95% CI: 1.58-4.97) increased risk of nodal metastasis and 1.66-fold (95% CI: 1.05-2.60) increased risk of mortality compared to other groups. T/T genotype also predicted the worse prognosis of buccal mucosa carcinoma subset of HNSCC. In vitro analysis indicated that exogenous miR-149 expression reduces the migration of HNSCC cells. Moreover, HNSCC cell subclones carrying the pri-mir-149 sequence containing the T variant show a low processing efficacy when converting the pre-mir-149 to mature miR-149. These findings suggest that miR-149 suppresses tumor cell mobility, and that the pre-mir-149 polymorphism may affect the processing of miR-149, resulting in a change in the abundance of the mature form miRNA, which, in turn, modulates tumor progression and patient survival.


Assuntos
Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , MicroRNAs/genética , Polimorfismo Genético , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Escamosas/diagnóstico , Estudos de Casos e Controles , Movimento Celular , Progressão da Doença , Feminino , Genótipo , Neoplasias de Cabeça e Pescoço/diagnóstico , Humanos , Hibridização In Situ , Masculino , Pessoa de Meia-Idade , Plasmídeos/metabolismo , Reação em Cadeia da Polimerase/métodos , Prognóstico , Análise de Regressão , Risco , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...