Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Psychol ; 15: 1363495, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38860046

RESUMO

Introduction: Theoretical considerations on motor imagery and motor execution have long been dominated by the functional equivalence view. Previous empirical works comparing these two modes of actions, however, have largely relied on subjective judgments on the imagery process, which may be exposed to various biases. The current study aims to re-examine the commonality and distinguishable aspects of motor imagery and execution via a response repetition paradigm. This framework aims to offer an alternative approach devoid of self-reporting, opening the opportunity for less subjective evaluation of the disparities and correlations between motor imagery and motor execution. Methods: Participants performed manual speeded-choice on prime-probe pairs in each trial under three conditions distinguished by the modes of response on the prime: mere observation (Perceptual), imagining response (Imagery), and actual responses (Execution). Responses to the following probe were all actual execution of button press. While Experiment 1 compared the basic repetition effects in the three prime conditions, Experiment 2 extended the prime duration to enhance the quality of MI and monitored electromyography (EMG) for excluding prime imagery with muscle activities to enhance specificity of the underlying mechanism. Results: In Experiment 1, there was no significant repetition effect after mere observation. However, significant repetition effects were observed in both imagery and execution conditions, respectively, which were also significantly correlated. In Experiment 2, trials with excessive EMG activities were excluded before further statistical analysis. A consistent repetition effect pattern in both Imagery and Execution but not the Perception condition. Now the correlation between Imagery and Execution conditions were not significant. Conclusion: Findings from the current study provide a novel application of a classical paradigm, aiming to minimize the subjectivity inherent in imagery assessments while examining the relationship between motor imagery and motor execution. By highlighting differences and the absence of correlation in repetition effects, the study challenges the functional equivalence hypothesis of imagery and execution. Motor representations of imagery and execution, when measured without subjective judgments, appear to be more distinguishable than traditionally thought. Future studies may examine the neural underpinnings of the response repetition paradigm to further elucidating the common and separable aspects of these two modes of action.

2.
Front Hum Neurosci ; 12: 27, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29545745

RESUMO

A reward or punishment can modulate motivation and emotions, which in turn affect cognitive processing. The present simultaneous functional magnetic resonance imaging-electroencephalography study examines neural mechanisms of response inhibition under the influence of a monetary reward or punishment by implementing a modified stop-signal task in a virtual battlefield scenario. The participants were instructed to play as snipers who open fire at a terrorist target but withhold shooting in the presence of a hostage. The participants performed the task under three different feedback conditions in counterbalanced order: a reward condition where each successfully withheld response added a bonus (i.e., positive feedback) to the startup credit, a punishment condition where each failure in stopping deduced a penalty (i.e., negative feedback), and a no-feedback condition where response outcome had no consequences and served as a control setting. Behaviorally both reward and punishment conditions led to significantly down-regulated inhibitory function in terms of the critical stop-signal delay. As for the neuroimaging results, increased activities were found for the no-feedback condition in regions previously reported to be associated with response inhibition, including the right inferior frontal gyrus and the pre-supplementary motor area. Moreover, higher activation of the lingual gyrus, posterior cingulate gyrus (PCG) and inferior parietal lobule were found in the reward condition, while stronger activation of the precuneus gyrus was found in the punishment condition. The positive feedback was also associated with stronger changes of delta, theta, and alpha synchronization in the PCG than were the negative or no-feedback conditions. These findings depicted the intertwining relationship between response inhibition and motivation networks.

3.
Front Hum Neurosci ; 10: 185, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27199708

RESUMO

The stop-signal paradigm has been widely adopted as a way to parametrically quantify the response inhibition process. To evaluate inhibitory function in realistic environmental settings, the current study compared stop-signal responses in two different scenarios: one uses simple visual symbols as go and stop signals, and the other translates the typical design into a battlefield scenario (BFS) where a sniper-scope view was the background, a terrorist image was the go signal, a hostage image was the stop signal, and the task instructions were to shoot at terrorists only when hostages were not present but to refrain from shooting if hostages appeared. The BFS created a threatening environment and allowed the evaluation of how participants' inhibitory control manifest in this realistic stop-signal task. In order to investigate the participants' brain activities with both high spatial and temporal resolution, simultaneous functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) recordings were acquired. The results demonstrated that both scenarios induced increased activity in the right inferior frontal gyrus (rIFG) and presupplementary motor area (preSMA), which have been linked to response inhibition. Notably, in right temporoparietal junction (rTPJ) we found both higher blood-oxygen-level dependent (BOLD) activation and synchronization of theta-alpha activities (4-12 Hz) in the BFS than in the traditional scenario after the stop signal. The higher activation of rTPJ in the BFS may be related to morality judgments or attentional reorienting. These results provided new insights into the complex brain networks involved in inhibitory control within naturalistic environments.

4.
Neuroimage ; 129: 105-116, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26777478

RESUMO

The contribution of orthographic representations to reading and writing has been intensively investigated in the literature. However, the distinction between neuronal correlates of the orthographic lexicon and the orthographic (graphemic) buffer has rarely been examined in alphabetic languages and never been explored in non-alphabetic languages. To determine whether the neural networks associated with the orthographic lexicon and buffer of logographic materials are comparable to those reported in the literature, the present fMRI experiment manipulated frequency and the stroke number of Chinese characters in the tasks of form judgment and stroke judgment, which emphasized the processing of character recognition and writing, respectively. It was found that the left fusiform gyrus exhibited higher activation when encountering low-frequency than high-frequency characters in both tasks, which suggested this region to be the locus of the orthographic lexicon that represents the knowledge of character forms. On the other hand, the activations in the posterior part of the left middle frontal gyrus and in the left angular gyrus were parametrically modulated by the stroke number of target characters only in the stroke judgment task, which suggested these regions to be the locus of the orthographic buffer that represents the processing of stroke sequence in writing. These results provide the first evidence for the functional and anatomical dissociation between the orthographic lexicon and buffer in reading and writing Chinese characters. They also demonstrate the critical roles of the left fusiform area and the frontoparietal network to the long-term and short-term representations of orthographic knowledge, respectively, across different orthographies.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiologia , Leitura , Redação , Adulto , Povo Asiático , Feminino , Humanos , Idioma , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Adulto Jovem
5.
Appl Opt ; 53(22): E61-8, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25090356

RESUMO

This study investigated the discomfort glare produced by the high-brightness LED billboards in relation to four factors: flicker frequency, panel luminance, viewing angular sub-tense, and ambient illuminance. The results showed that visual comfort is not affected by ambient illuminance but by the other three factors. Also, interaction was found between luminance and viewing angle. The experimental data were curve fitted to construct visual comfort models of LED billboard displays. By modulating the operating conditions, comfort display with LED billboards can be achieved.


Assuntos
Publicidade/métodos , Ofuscação , Iluminação/instrumentação , Estimulação Luminosa/instrumentação , Semicondutores , Percepção Visual/fisiologia , Adulto , Comportamento do Consumidor , Desenho de Equipamento , Análise de Falha de Equipamento , Feminino , Humanos , Iluminação/métodos , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa/métodos , Adulto Jovem
6.
Cortex ; 48(8): 1043-51, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21889134

RESUMO

Previous research found that quantitative information labelled on target objects of grasping movement modulates grip apertures. While the interaction between numerical cognition and sensorimotor control may reflect a general representation of magnitude underpinned by the parietal cortex, the nature of this embodied cognitive processing remains unclear. In the present study, we examined whether the numerical effects on grip aperture can be flexibly modulated by the relative magnitude between numbers under a context, which suggests a trial-by-trial comparison mechanism to underlie this effect. The participants performed visual open-loop grasping towards one of two adjacent objects that were of the same physical size but labelled with different Arabic digits. Analysis of participants' grip apertures revealed a numerical size-contrast effect, in which the same numerical label (i.e., 5) led to larger grip apertures when it was accompanied by a smaller number (i.e., 2) than by a larger number (i.e., 8). The corrected grip aperture over the time course of movement showed that the numerical size-contrast effect remained significant throughout the grasping movement, despite a trend of gradual dissipation. Our findings demonstrated that interactions between number and action critically depend on the size-contrast of magnitude information in the context. Such a size-contrast effect might result from a general system, which is sensitive to relative magnitude, for different quantity domains. Alternatively, the magnitude representations of numbers and action might be processed separately and interact at a later stage of motor programming.


Assuntos
Força da Mão/fisiologia , Movimento/fisiologia , Percepção de Tamanho/fisiologia , Encéfalo/fisiologia , Mãos/fisiologia , Humanos , Desempenho Psicomotor/fisiologia , Adulto Jovem
7.
Exp Brain Res ; 194(4): 553-62, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19242686

RESUMO

The interaction between numbers and action-related process has received increasing attention in the literature of numerical cognition. In the current study, two dual-task experiments were conducted to explore the interaction among numerical, prehension, and perceptual color/size judgments. The results revealed the commonality and distinctness of the magnitude representations that are involved in these tasks. Specifically, a photograph of a graspable object with a superimposed Arabic digit was presented in each trial. Participants were required to first judge the parity of the digit with a manual response while simultaneously planning a subsequent vocal response pertaining to the depicted object. When parity and action judgments were performed close in time, the compatibility effect between the numerical magnitude of the digit and the appropriate action (pinch vs. clutch) for the object was demonstrated in both manual and vocal responses. In contrast, such compatibility effect was absent when parity judgment was coupled with color-related or perceptual size judgment. The findings of the current study support the existence of a common magnitude code underlying numerical and non-numerical dimensions for action-related purposes, as proposed by the ATOM model (Walsh in Trends Cogn Sci 7:483-488, 2003). Furthermore, based on the selective presence of the compatibility effect, we argue that the interaction among different quantity dimensions conforms to the "dorsal-action and ventral-perception" organizational principle of the human brain.


Assuntos
Cognição , Reconhecimento Visual de Modelos , Desempenho Psicomotor , Análise de Variância , Percepção de Cores , Humanos , Tempo de Reação
8.
Neuroimage ; 44(1): 200-12, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18801445

RESUMO

In size-weight (SW) illusions, people learn to scale their fingertip forces for lifting small and big objects of equal weight even though they fail to learn perceptually that both objects have the same weight. The question then arises as to what the separate neural mechanisms are for determining the perceived heaviness of objects and the predicted weight of these objects during lifting. To answer this question, we used fMRI to first identify areas that code for the size, weight, and density of objects using an adaptation paradigm. We then contrasted BOLD in the SW illusion condition in which subjects falsely perceived the smaller of two equally weighted objects as heavier versus a condition in which size and weight did not differ between objects. Sensory areas in the parietal and temporal cortex adapted to the size of objects and the primary motor area (M1) contralateral to the lifting hand adapted to the weight of objects. The ventral premotor area (PMv), which did not adapt to either the size or the weight of objects, adapted instead to the density of objects, and responded more when subjects falsely perceived differences in weight between objects in the SW illusion condition. Taken together, we conclude that the real-world properties of objects, such as size and weight, are computed by sensory areas and by M1 respectively, whereas the perceived heaviness of objects, presumably based on their apparent density, is computed by PMv, a higher-order area well placed to integrate sensory information about the size of objects and the weight of objects.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiologia , Ilusões/fisiologia , Remoção , Percepção de Tamanho/fisiologia , Percepção de Peso/fisiologia , Adolescente , Adulto , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino
9.
Exp Brain Res ; 185(2): 319-29, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17934725

RESUMO

Passing objects from one hand to the other occurs frequently in our daily life. What kind of information about the weight of the object is transferred between the holding and lifting hand? To examine this, we asked people to hold (and heft) an object in one hand and then pick it up with the other. The objects were presented in the context of a size-weight illusion: that is, two objects of different sizes but the same weight were used. One group of participants held one of the objects in their left hand and then picked it up with their right. Another group of participants simply picked up the objects from a table. Thus, the former group had on-line information about the weight of the object, whereas the latter did not. Both groups showed a strong and equivalent size-weight illusion throughout the experiment. At the same time, the group that lifted the objects from the hefting hand applied equal grip force to the small and large object right from the start; in contrast, the group lifting the objects from the table, initially applied more grip force to the large than to the small object before eventually applying the same force to both. In two additional groups, a delay period was imposed between the lifting of the first and the second hands. The force parameters employed by these last two groups were virtually identical to those used by the group that lifted the object directly from the other hand. These results suggest that the initial calibration of grip force uses veridical information about the weight of the object provided by the other hand. This veridical information about weight is available on-line and is retained in memory for later access. The perceived weight of the object is basically ignored in forming grasping forces.


Assuntos
Força da Mão/fisiologia , Remoção , Desempenho Psicomotor/fisiologia , Percepção de Peso/fisiologia , Adolescente , Adulto , Feminino , Mãos/fisiologia , Humanos , Masculino , Motivação , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...