Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 20(11): e2305758, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37936297

RESUMO

Recently, sulfide-based all-solid-state batteries (ASSBs) have attracted great attention because of their excellent safety and high energy density. However, by-products formed from side-reactions between the oxide-based cathodes and sulfide-based solid electrolytes (SEs) increase the interfacial resistance and degrade the cell performance. Suppression of this interfacial resistance is thus critical. In this study, the extraordinarily high stability of the cathode/SE interface is discovered when a Li10 SnP2 S12 (LSnPS) is applied to a cathode buffer layer. The electrochemical properties of the cathode interface at high potential are improved by synthesizing a core-shell structure cathode using LSnPS. The synthesized LSnPS is uniformly coated on a Li2 ZrO3 -coated LiNi0.8 Co0.1 Mn0.1 O2 (LZO-NCM) surface using the cost-efficient mechano-fusion method. The ASSB with LSnPS-coated LZO-NCM as the cathode and Li6 PS5 Cl (argyrodite, LPSCl) as the SE exhibited a capacity of 192 mAh g-1 and excellent cycle retention of ≈75% after 500 charge/discharge cycles. In addition, the degradation mechanism at the cathode/SE interface is investigated. The results indicated that LSnPS stabilizes the interface between NCM and argyrodite, thereby inhibiting the decomposition of the SE. This technology is expected to contribute to the commercialization of cathode materials for sulfide-based ASSBs due to its enhanced cycle performance, low-cost material application, and eco-friendly process.

2.
Langmuir ; 37(1): 376-384, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33377782

RESUMO

Regulation of wetting and spreading of liquid on porous material plays an important role in a variety of applications, such as waterproofing, anti-icing, antioxidation, self-cleaning, etc. In this work, we reveal the role of back-surface coating with superhydrophobic nanoparticles in controlling the spreading of water droplets on cellulose-based papers. A layer of superhydrophobic polydivinylbenzene (PDVB) nanoparticles is spin-coated on the back surface of different types of papers. The spreading of a water droplet on the top, uncoated surface is dependent on the size of the PDVB nanoparticles in the coating. Using a relationship derived from Darcy's law, we observe that the energy barrier for the spreading of water droplets on three types of papers (heavy-weight, light-weight, and slight-weight papers) decreases with the decrease of the nanoparticle size in the back-surface coating. The spreading of the water droplet is dependent on the porous structure, permeability, and compressibility of the papers. The method presented in this work provides a feasible approach to use the back-surface coating to control the wettability of papers.

3.
ACS Nano ; 9(1): 626-32, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25513896

RESUMO

Fast charge-discharge process has been reported to give a high capacity loss. A nanobattery consisting of a single LiMn2O4 nanowire cathode, ionic liquid electrolyte and lithium titanium oxide anode was developed for in situ transmission electron microscopy. When it was fully charged or discharged within a range of 4 V in less than half an hour (corresponding average C rate: 2.5C), Li-rich and Li-poor phases were observed to be separated by a transition region, and coexisted during whole process. The phase transition region moved reversibly along the nanowire axis which corresponds to the [011] direction, allowing the volume fraction of both phases to change. In the electron diffraction patterns, the Li-rich phase was seen to have the (100) orientation with respect to the incident electron beam, while the Li-poor phase had the (111̅) orientation. The orientation was changed as the transition region moved. However, the nanowire did not fracture. This suggests that a LiMn2O4 nanowire has the advantage of preventing capacity fading at high charge rates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...