Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Kaohsiung J Med Sci ; 40(7): 631-641, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38826147

RESUMO

Autophagy is a self-recycling machinery to maintain cellular homeostasis by degrading harmful materials in the cell. Autophagy-related gene 5 (Atg5) is required for autophagosome maturation. However, the role of Atg5 in tumorigenesis under autophagy deficient conditions remains unclear. This study focused on the autophagy-independent role of Atg5 and the underlying mechanism in tumorigenesis. We demonstrated that knockout of autophagy-related genes including Atg5, Atg7, Atg9, and p62 in mouse embryonic fibroblast (MEF) cells consistently decreased cell proliferation and motility, implying that autophagy is required to maintain diverse cellular functions. An Atg7 knockout MEF (Atg7-/- MEF) cell line representing deprivation of autophagy function was used to clarify the role of Atg5 transgene in tumorigenesis. We found that Atg5-overexpressed Atg7-/-MEF (clone A) showed increased cell proliferation, colony formation, and migration under autophagy deficient conditions. Accordingly, rescuing the autophagy deficiency of clone A by overexpression of Atg7 gene shifts the role of Atg5 from pro-tumor to anti-tumor status, indicating the dual role of Atg5 in tumorigenesis. Notably, the xenograft mouse model showed that clone A of Atg5-overexpressed Atg7-/- MEF cells induced temporal tumor formation, but could not prolong further tumor growth. Finally, biomechanical analysis disclosed increased Wnt5a secretion and p-JNK expression along with decreased ß-catenin expression. In summary, Atg5 functions as a tumor suppressor to protect the cell under normal conditions. In contrast, Atg5 shifts to a pro-tumor status under autophagy deprivation conditions.


Assuntos
Proteína 5 Relacionada à Autofagia , Proteína 7 Relacionada à Autofagia , Autofagia , Carcinogênese , Proliferação de Células , Animais , Autofagia/genética , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Camundongos , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Carcinogênese/genética , Carcinogênese/patologia , Movimento Celular/genética , Humanos , Fibroblastos/metabolismo , Camundongos Knockout
2.
Kaohsiung J Med Sci ; 40(7): 642-649, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38804615

RESUMO

Autophagy can be classified as degradative and secretory based on distinct functions. The small GTPase proteins Rab8a and Rab37 are responsible for secretory autophagy-mediated exocytosis of IL-1ß, insulin, and TIMP1 (tissue inhibitor of 54 metalloproteinase 1). Other Rab family members participating in secretory autophagy are poorly understood. Herein, we identified 26 overlapped Rab proteins in purified autophagosomes of mouse pancreatic ß-cell "Min-6" and human lung cancer cell "CL1-5-Q89L" with high secretory autophagy tendency by LC-MS/MS proteomics analysis. Six Rab proteins (Rab8a, Rab11b, Rab27a, Rab35, Rab37, and Rab7a) were detected in autophagosomes of four cell lines, associating them with autophagy-related vesicle trafficking. We used CL1-5-Q89L cell line model to evaluate the levels of Rab proteins colocalization with autophagy LC3 proteins and presence in purified autophagosomes. We found five Rab proteins (Rab8a, Rab11b, Rab27a, Rab35, and Rab37) are highly expressed in the autophagosome compared to the normal control by immunoblotting under active secretion conditions. However, only Rab8a, Rab35, and Rab37 showing high colocalization with LC3 protein by cofocal microscopy. Despite the discrepancy between the image and immunoblotting analysis, our data sustains the speculation that Rab8a, Rab11b, Rab27a, Rab35, and Rab37 are possibly associated with the secretory autophagy machinery. In contrast, Rab7a shows low colocalization with LC3 puncta and low level in the autophagosome, suggesting it regulates different vesicle trafficking machineries. Our findings open a new direction toward exploring the role of Rab proteins in secretory autophagy-related cargo exocytosis and identifying the cargoes and effectors regulated by specific Rab proteins.


Assuntos
Autofagossomos , Autofagia , Proteínas rab de Ligação ao GTP , Proteínas rab de Ligação ao GTP/metabolismo , Autofagia/fisiologia , Humanos , Animais , Camundongos , Autofagossomos/metabolismo , Linhagem Celular Tumoral , Proteínas Associadas aos Microtúbulos/metabolismo , Proteômica/métodos , Espectrometria de Massas em Tandem
3.
Artigo em Inglês | MEDLINE | ID: mdl-38659261

RESUMO

BACKGROUND: Honokiol is a natural polyphenolic compound extracted from Magnolia officinali, which is commonly used material in Chinese herbal medicine, has a variety of biological functions, including anti-tumor, anti-oxidant, anti-inflammation, anti-microbial and anti-allergy. Although honokiol has numerous beneficial effects on human diseases, the underlying mechanisms of tumor metastasis are still unclear. Previously, we reported that honokiol suppresses thyroid cancer cell proliferation with cytotoxicity through cell cycle arrest, apoptosis, and dysregulation of intracellular hemostasis. Herein, we hypothesized that the antioxidant effect of honokiol might play a critical role in thyroid cancer cell proliferation and migration. METHODS: The cell viability assays, cellular reactive oxygen species (ROS) activity, cell migration, and immunoblotting were performed after cells were treated with honokiol. RESULTS: Based on this hypothesis, we first demonstrated that honokiol suppresses cell proliferation in two human anaplastic thyroid carcinoma (ATC) cell lines, KMH-2 and ASH-3, within a dosage- and time-dependent manner by cell counting kit-8 (CCK-8) assay. Next, we examined that honokiol induced ROS activation and could be suppressed by pre-treated with an antioxidant agent, N-acetyl-l-cysteine (NAC). Furthermore, the honokiol suppressed cell proliferation can be rescued by pre-treated with NAC. Finally, we demonstrated that honokiol inhibited ATC cell migration by modulating epithelial-mesenchymal transition (EMT)-related markers by Western blotting. CONCLUSION: Taken together, we provided the potential mechanism for treating ATC cells with honokiol, which significantly suppresses tumor proliferation and inhibits tumor metastasis in vitro through reactive oxygen species (ROS) induction.

4.
Microbiol Spectr ; 11(3): e0100223, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37184408

RESUMO

Limited treatment options exist for the treatment of carbapenem-resistant Enterobacterales (CRE) bacteria. Fortunately, there are several recently approved antibiotics indicated for CRE infections. Here, we examine the in vitro activity of various novel agents (eravacycline, plazomicin, ceftazidime-avibactam, imipenem-relebactam, and meropenem-vaborbactam) and comparators (tigecycline, amikacin, levofloxacin, fosfomycin, polymyxin B) against 365 well-characterized CRE clinical isolates with various genotypes. Nonduplicate isolates collected from the largest public health hospital in Singapore between 2007 and 2020 were subjected to antimicrobial susceptibility testing (broth microdilution or antibiotic gradient test strips). Susceptibilities were defined using Clinical and Laboratory Standards Institute (CLSI) or Food and Drug Administration (FDA) interpretative criteria. Sequence types and resistance mechanisms were characterized using short-read whole-genome sequencing. Overall, tigecycline and plazomicin exhibited the highest susceptibility rates (89.6% and 80.8%, respectively). However, the tigecycline susceptibility breakpoint utilized here may be outdated in view of prevailing pharmacokinetic-pharmacodynamic (PK/PD) data. Susceptibility varied by carbapenemase genotype; the ß-lactam/ß-lactamase inhibitor combinations were equally active (92.3 to 99.2% susceptible) against KPC producers, but only ceftazidime-avibactam retained high susceptibility (98.7%) against OXA-48-like producers. Against metallo-ß-lactamase producers, only plazomicin exhibited moderate activity (77.0% susceptible). Aminoglycoside activity was also influenced by carbapenemase genotypes. This work provides an insight into the comparative activity and presumptive utility of novel agents in this geographic region. IMPORTANCE This study determined the susceptibilities of carbapenem-resistant Enterobacterales isolates to various novel antimicrobial agents (ceftazidime-avibactam, imipenem-relebactam, meropenem-vaborbactam, eravacycline, and plazomicin). Whole-genome sequencing was performed for all strains. Our study findings provide insights into the comparative activities of novel agents in this geographic region. Plazomicin and ceftazidime-avibactam exhibited the lowest nonsusceptibility rates and may be considered promising agents in the management of carbapenem-resistant Enterobacterales infections. We note also that antibiotic activity is influenced by genotypes and that understanding the geographic region's molecular epidemiology could aid in the definition of the presumptive utility of novel agents and contribute to antibiotic decision-making.


Assuntos
Antibacterianos , Carbapenêmicos , Meropeném , Carbapenêmicos/farmacologia , Tigeciclina/farmacologia , Antibacterianos/farmacologia , beta-Lactamases/genética , Inibidores de beta-Lactamases/farmacologia , Imipenem/farmacologia , Testes de Sensibilidade Microbiana
5.
J Biol Chem ; 299(3): 102997, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36764523

RESUMO

Plant legumains are Asn/Asp-specific endopeptidases that have diverse functions in plants. Peptide asparaginyl ligases (PALs) are a special legumain subtype that primarily catalyze peptide bond formation rather than hydrolysis. PALs are versatile protein engineering tools but are rarely found in nature. To overcome this limitation, here we describe a two-step method to design and engineer a high-yield and efficient recombinant PAL based on commonly found asparaginyl endopeptidases. We first constructed a consensus sequence derived from 1500 plant legumains to design the evolutionarily stable legumain conLEG that could be produced in E. coli with 20-fold higher yield relative to that for natural legumains. We then applied the ligase-activity determinant hypothesis to exploit conserved residues in PAL substrate-binding pockets and convert conLEG into conPAL1-3. Functional studies showed that conLEG is primarily a hydrolase, whereas conPALs are ligases. Importantly, conPAL3 is a superefficient and broadly active PAL for protein cyclization and ligation.


Assuntos
Escherichia coli , Proteínas de Plantas , Sequência de Aminoácidos , Proteínas de Plantas/metabolismo , Ciclização , Escherichia coli/genética , Escherichia coli/metabolismo , Plantas/metabolismo , Peptídeo Sintases/metabolismo , Engenharia de Proteínas , Peptídeos/metabolismo , Endopeptidases/metabolismo
6.
Diagnostics (Basel) ; 13(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36672980

RESUMO

Using a deep learning algorithm in the development of a computer-aided system for colon polyp detection is effective in reducing the miss rate. This study aimed to develop a system for colon polyp detection and classification. We used a data augmentation technique and conditional GAN to generate polyp images for YOLO training to improve the polyp detection ability. After testing the model five times, a model with 300 GANs (GAN 300) achieved the highest average precision (AP) of 54.60% for SSA and 75.41% for TA. These results were better than those of the data augmentation method, which showed AP of 53.56% for SSA and 72.55% for TA. The AP, mAP, and IoU for the 300 GAN model for the HP were 80.97%, 70.07%, and 57.24%, and the data increased in comparison with the data augmentation technique by 76.98%, 67.70%, and 55.26%, respectively. We also used Gaussian blurring to simulate the blurred images during colonoscopy and then applied DeblurGAN-v2 to deblur the images. Further, we trained the dataset using YOLO to classify polyps. After using DeblurGAN-v2, the mAP increased from 25.64% to 30.74%. This method effectively improved the accuracy of polyp detection and classification.

7.
Mol Med Rep ; 27(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36524366

RESUMO

Although arsenic is an environmental toxicant, arsenic trioxide (ATO) is used to treat acute promyelocytic leukemia (APL) with anticancer effects. Studies have demonstrated oral cancer is in the top 10 cancers in Taiwan. High rate of oral cancers is linked to various behaviors, such as excessive alcohol consumption and tobacco use. Similarly, betel chewing is a strong risk factor in oral cancer. In the present study, oral squamous carcinoma OC3 cells were investigated with the treatments of sodium arsenite (NaAsO2) and dimethylarsenic acid (DMA), respectively, to examine if arsenic compounds have anti­cancer efforts. It was found that 1 µM NaAsO2 and 1 mM DMA for 24 h induced rounded contours with membrane blebbing phenomena in OC3 cells, revealing cell apoptotic characteristics. In addition, NaAsO2 (10­100 µM) and DMA (1­100 mM) significantly decreased OC3 cell survival. In cell cycle regulation detected by flow cytometry, NaAsO2 and DMA significantly augmented percentage of subG1 and G2/M phases in OC3 cells, respectively. Annexin V/PI double staining assay was further used to confirm NaAsO2 and DMA did induce OC3 cell apoptosis. In mechanism investigation, western blotting assay was applied and the results showed that NaAsO2 and DMA significantly induced phosphorylation of JNK, ERK1/2 and p38 and then the cleavages of caspase­8, ­9, ­3 and poly ADP­ribose polymerase (PARP) in OC3 cells, dynamically. In conclusion, NaAsO2 and DMA activated MAPK pathways and then apoptotic pathways to induce OC3 oral cancer cell apoptosis.


Assuntos
Arsenicais , Neoplasias Bucais , Humanos , Ácido Cacodílico/farmacologia , Linhagem Celular Tumoral , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/patologia , Apoptose , Arsenicais/farmacologia
8.
Microbiol Spectr ; 10(5): e0095722, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36066252

RESUMO

Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a global public health threat. In this study, we employed whole-genome sequencing (WGS) to determine the genomic epidemiology of a longitudinal collection of clinical CRKP isolates recovered from a large public acute care hospital in Singapore. Phylogenetic analyses, a characterization of resistance and virulence determinants, and plasmid profiling were performed for 575 unique CRKP isolates collected between 2009 and 2020. The phylogenetic analyses identified the presence of global high-risk clones among the CRKP population (clonal group [CG] 14/15, CG17/20, CG147, CG258, and sequence type [ST] 231), and these clones constituted 50% of the isolates. Carbapenemase production was common (n = 497, 86.4%), and KPC was the predominant carbapenemase (n = 235, 40.9%), followed by OXA-48-like (n = 128, 22.3%) and NDM (n = 93, 16.2%). Hypervirulence was detected in 59 (10.3%) isolates and was most common in the ST231 carbapenemase-producing isolates (21/59, 35.6%). Carbapenemase genes were associated with diverse plasmid replicons; however, there was an association of blaOXA-181/232 with ColKP3 plasmids. This study presents the complex and diverse epidemiology of the CRKP strains circulating in Singapore. Our study highlights the utility of WGS-based genomic surveillance in tracking the population dynamics of CRKP. IMPORTANCE In this study, we characterized carbapenem-resistant Klebsiella pneumoniae clinical isolates collected over a 12-year period in the largest public acute-care hospital in Singapore using whole-genome sequencing. The results of this study demonstrate significant genomic diversity with the presence of well-known epidemic, multidrug-resistant clones amid a diverse pool of nonepidemic lineages. Genomic surveillance involving comprehensive resistance, virulence, and plasmid gene content profiling provided critical information for antimicrobial resistance monitoring and highlighted future surveillance priorities, such as the emergence of ST231 K. pneumoniae strains bearing multidrug resistance, virulence elements, and the potential plasmid-mediated transmission of the blaOXA-48-like gene. The findings here also reinforce the necessity of unique infection control and prevention strategies that take the genomic diversity of local circulating strains into consideration.


Assuntos
Anti-Infecciosos , Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Klebsiella , Humanos , Klebsiella pneumoniae/genética , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/tratamento farmacológico , Filogenia , Saúde Pública , Singapura/epidemiologia , Tipagem de Sequências Multilocus , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , beta-Lactamases/genética , Plasmídeos/genética , Genômica , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Hospitais , Anti-Infecciosos/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Testes de Sensibilidade Microbiana
9.
Int J Oncol ; 60(2)2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35029282

RESUMO

For a number of years, oral cancer has remained in the top ten most common types of cancer, with an incidence rate that is steadily increasing. In total, ~75% oral cancer cases are associated with lifestyle factors, including uncontrolled alcohol consumption, betel and tobacco chewing, and the excessive use of tobacco. Notably, betel chewing is highly associated with oral cancer in Southeast Asia. Arsenic is a key environmental toxicant; however, arsenic trioxide has been used as a medicine for the treatment of acute promyelocytic leukemia, highlighting its anticancer properties. The present study aimed to investigate the role of arsenic compounds in the treatment of cancer, using FaDu oral squamous carcinoma cells treated with sodium arsenite (NaAsO2) and dimethyl arsenic acid (DMA). The results demonstrated that FaDu cells exhibited membrane blebbing phenomena and high levels of apoptosis following treatment with 10 µM NaAsO2 and 1 mM DMA for 24 h. The results of cell viability assay demonstrated that the rate of FaDu cell survival was markedly reduced as the concentration of arsenic compounds increased from 10 to 100 µM NaAsO2, and 1 to 100 mM DMA. Moreover, flow cytometry was carried out to further examine the effects of arsenic compounds on FaDu cell cycle regulation; the results revealed that treatment with NaAsO2 and DMA led to a significant increase in the percentage of FaDu cells in the sub­G1 and G2/M phases of the cell cycle. An Annexin V/PI double staining assay was subsequently performed to verify the levels of FaDu cell apoptosis following treatment with arsenic compounds. Furthermore, the results of the western blot analyses revealed that the expression levels of caspase­8, ­9 and ­3, and poly ADP­ribose polymerase, as well the levels of phosphorylated JNK and ERK1/2 were increased following treatment with NaAsO2 and DMA in the FaDu cells. On the whole, the results of the present study revealed that treatment with NaAsO2 and DMA promoted the apoptosis of FaDu oral cancer cells, by activating MAPK pathways, as well as the extrinsic and intrinsic apoptotic pathways.


Assuntos
Apoptose/efeitos dos fármacos , Arsênio/farmacologia , Transdução de Sinais/efeitos dos fármacos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Arsênio/metabolismo , Caspases/metabolismo , Caspases/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/farmacologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/fisiopatologia
10.
Artigo em Inglês | MEDLINE | ID: mdl-38023774

RESUMO

Cordycepin, a bioactive compound extracted from Cordyceps sinensis, can induce apoptosis in human OEC-M1 oral cancer cells. However, the exact mechanism is still unclear. The present study aimed to investigate the underlying mechanism of cordycepin-induced apoptosis in OEC-M1 cells. Following treatment with cordycepin, apoptosis was examined and quantified using a DNA laddering assay and a cytokeratin 18 fragment enzyme-linked immunosorbent assay, respectively. Expressions of mitogen-activated protein kinases (MAPKs) and apoptosis-related proteins were detected by the western blot analysis. Our results show that a pan-caspase inhibitor, Z-VAD-FMK, could significantly inhibit cordycepin-induced apoptosis in OEC-M1 cells. In addition, treatment with cordycepin not only activated caspase-8, caspase-9, and caspase-3 but also induced Bid and poly ADP-ribose polymerase cleavages. Furthermore, cordycepin also induced the activation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase, and p38 MAPKs. Among MAPKs, activation of JNK solely contributed to cordycepin-induced apoptosis with the activation of caspase-8, caspase-9, and caspase-3 and cleavage of PARP. Taken together, the present study demonstrated that cordycepin activated JNK and caspase pathways to induce apoptosis in OEC-M1 cells.

11.
Front Microbiol ; 12: 779988, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970239

RESUMO

Carbapenem-resistant Klebsiella pneumoniae (CRKP) is becoming increasingly problematic due to the limited effectiveness of new antimicrobials or other factors such as treatment cost. Thus, combination therapy remains a suitable treatment option. We aimed to evaluate the in vitro bactericidal activity of various antibiotic combinations against CRKP with different carbapenemase genotypes and sequence types (STs). Thirty-seven CRKP with various STs and carbapenemases were exposed to 11 antibiotic combinations (polymyxin B or tigecycline in combination with ß-lactams including aztreonam, cefepime, piperacillin/tazobactam, doripenem, meropenem, and polymyxin B with tigecycline) in static time-kill studies (TKS) using clinically achievable concentrations. Out of the 407 isolate-combination pairs, only 146 (35.8%) were bactericidal (≥3 log10CFU/mL decrease from initial inoculum). Polymyxin B in combination with doripenem, meropenem, or cefepime was the most active, each demonstrating bactericidal activity in 27, 24, and 24 out of 37 isolates, respectively. Tigecycline in combination with ß-lactams was rarely bactericidal. Aside from the lower frequency of bactericidal activity in the dual-carbapenemase producers, there was no apparent difference in combination activity among the strains with other carbapenemase types. In addition, bactericidal combinations were varied even in strains with similar STs, carbapenemases, and other genomic characteristics. Our findings demonstrate that the bactericidal activity of antibiotic combinations is highly strain-specific likely owing to the complex interplay of carbapenem-resistance mechanisms, i.e., carbapenemase genotype alone cannot predict in vitro bactericidal activity. The availability of WGS information can help rationalize the activity of certain combinations. Further studies should explore the use of genomic markers with phenotypic information to predict combination activity.

12.
Artigo em Inglês | MEDLINE | ID: mdl-34765012

RESUMO

Since a portion of patients with nasopharyngeal carcinoma (NPC) do not benefit much from current standard treatments, it is still needed to discover new therapeutic drugs to improve the prognosis of the patients. Considering that Chinese traditional medicine plays a role in inhibiting tumor progression, in this study, we aimed to investigate whether a Chinese herbal formula, Qing Yan Li Ge Tang (QYLGT), has the anticancer activity in NPC cells and explore the underlying mechanism as well. MTT assay, colony formation assay, immunoblotting assay, and DNA laddering assay were performed to assess cell viability, cell colony formation, protein expression, and DNA fragmentation, respectively. Results show that QYLGT was able to inhibit the cell viability and decrease colony formation ability in NPC cells. QYLGT could also increase the formation of intracellular vacuoles and induce the autophagy-related protein expressions, including Atg3, Atg6, and Atg12-Atg5 conjugate in NPC cells. Treatment with an autophagy inhibitor, 3-methyladenine, could significantly recover QYLGT-inhibited cell viability of NPC cells. In addition, QYLGT did not significantly induce apoptosis in NPC cells. We also found that QYLGT had the ability to activate phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of the rapamycin (mTOR) pathway. Treatment with PI3K inhibitors, LY294002 and wortmannin, or mTOR inhibitors, rapamycin and Torin 1, could not only recover QYLGT-inhibited cell viability of NPC cells but also inhibit Atg3 expression. Taken together, our results demonstrated that QYLGT could induce autophagic cell death in NPC cells through the PI3K/Akt/mTOR pathway.

13.
Int J Mol Sci ; 22(20)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34681622

RESUMO

Phosphatidylinositol 3-kinase catalytic subunit type 3 (PIK3C3), the mammalian ortholog of yeast vesicular protein sorting 34 (Vps34), belongs to the phosphoinositide 3-kinase (PI3K) family. PIK3C3 can phosphorylate phosphatidylinositol (PtdIns) to generate phosphatidylinositol 3-phosphate (PI3P), a phospholipid central to autophagy. Inhibition of PIK3C3 successfully inhibits autophagy. Autophagy maintains cell survival when modifications occur in the cellular environment and helps tumor cells resist metabolic stress and cancer treatment. In addition, PIK3C3 could induce oncogenic transformation and enhance tumor cell proliferation, growth, and invasion through mechanisms independent of autophagy. This review addresses the structural and functional features, tissue distribution, and expression pattern of PIK3C3 in a variety of human tumors and highlights the underlying mechanisms involved in carcinogenesis. The implications in cancer biology, patient prognosis prediction, and cancer therapy are discussed. Altogether, the discovery of pharmacological inhibitors of PIK3C3 could reveal novel strategies for improving treatment outcomes for PIK3C3-mediated human diseases.


Assuntos
Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias/patologia , Autofagia , Proliferação de Células , Classe III de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe III de Fosfatidilinositol 3-Quinases/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/metabolismo , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Domínios Proteicos
14.
Oncol Lett ; 22(4): 705, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34457060

RESUMO

It has been reported that paclitaxel activates cell cycle arrest and increases caspase protein expression to induce apoptosis in head and neck squamous cell carcinoma (HNSCC) cell lines. However, the potential signaling pathway regulating this apoptotic phenomenon remains unclear. The present study used OEC-M1 cells to investigate the underlying molecular mechanism of paclitaxel-induced apoptosis. Following treatment with paclitaxel, cell viability was assessed via the MTT assay. Necrosis, apoptosis, cell cycle and mitochondrial membrane potential (∆Ψm) were analyzed via flow cytometric analyses, respectively. Western blot analysis was performed to detect the expression levels of proteins associated with the MAPK and caspase signaling pathways. The results demonstrated that low-dose paclitaxel (50 nM) induced apoptosis but not necrosis in HNSCC cells. In addition, paclitaxel activated the c-Jun N-terminal kinase (JNK), but not extracellular signal-regulated kinase or p38 mitogen-activated protein kinase. The paclitaxel-activated JNK contributed to paclitaxel-induced apoptosis, activation of caspase-3, -6, -7, -8 and -9, and reduction of ∆Ψm. In addition, caspase-8 and -9 inhibitors, respectively, significantly decreased paclitaxel-induced apoptosis. Notably, Bid was truncated following treatment with paclitaxel. Taken together, the results of the present study suggest that paclitaxel-activated JNK is required for caspase activation and loss of ∆Ψm, which results in apoptosis of HNSCC cells. These results may provide mechanistic basis for designing more effective paclitaxel-combining regimens to treat HNSCC.

15.
Transl Oncol ; 14(10): 101175, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34243015

RESUMO

BACKGROUND: Renal cell carcinoma with rhabdoid features (RCC-RF) is an aggressive histologic variant in the adults and is usually unresponsive to standard chemotherapy. METHODS: Expression of SMARCB1/INI1 was examined in primary RCC-RF (n = 5). Stable INI1 with/without prostaglandin E2 receptor 1 (EP1) knockdown cell lines were created in the ACHN and 786-O RCC cell lines and measured for epidermal growth factor receptor (EGFR)-related signaling pathways. Chemosensitivity to targeted drugs in vitro was tested after knocking down of INI1 in both cell lines. The outcome of co-targeting of INI1 and EP1 in RCC was examined using a tumorigenicity assay. RESULTS: Expression of INI1 was markedly reduced at both transcriptional and translational levels in primary RCC-RF. Immunohistochemical expression of INI1 protein was lost in the nuclei of rhabdoid cells compared with conventional RCC (n = 8). Using two cell lines with different genetic background, we showed that knocking down of INI1 activates the EGFR signaling with up-regulated AKT and ERK pathways and sensitizes cancer cells to Erlotinib treatment in vitro. However, cell-line dependent effects were also demonstrated with reference to impact of INI1 or EP1 on cell growth, migration and response to Gefitinib or Everolimus treatment in vitro. CONCLUSION: Inactivation of INI1 may play a role in the pathogenesis of RCC-RF. Erlotinib is recommended in the management of patients with INI1-related RCC.

16.
J Biomed Sci ; 27(1): 102, 2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33248456

RESUMO

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is widely prevalent in Taiwan, and high metastatic spread of ESCC leads to poor survival rate. Fibronectin (FN) assembly on the cell membrane may induce ESCC mobility. MicroRNAs (MiRNAs) are abundant in and participate in tumorigenesis in many cancers. However, the role of MiRNA in FN assembly-related ESCC mobility remains unexplored. METHODS: We divided ESCC CE81T cells into high-FN assembly (CE81FN+) and low-FN assembly (CE81FN-) groups by flow cytometry. MiRNA microarray analysis identified miR-146a expression as the most down-regulated miRNA in comparison of CE81FN+ and CE81FN- cells. RESULTS: Cell proliferation and migration were decreased when CE81FN+ cells overexpressed transgenic miR-146a compared to the parental cells, indicating an inverse correlation between low miR-146a expression and high proliferation as well as motility of FN assembly ESCC cells. Furthermore, vimentin is the target gene of miR-146a involved in ESCC tumorigenesis. MiR-146a suppressed cell proliferation, migration and invasion of CE81FN+ cells through the inhibition of vimentin expression, as confirmed by real-time PCR, Western blotting and Transwell™ assay. Analysis of one hundred and thirty-six paired ESCC patient specimens revealed that low miR-146a and high vimentin levels were frequently detected in tumor, and that the former was associated with late tumor stages (III and IV). Notably, either low miR-146a expression or high vimentin level was significantly associated with poor overall survival rate among ESCC patients. CONCLUSIONS: This is the first report to link FN assembly in the cell membrane with miR-146a, vimentin and ESCC tumorigenesis both in vitro and in ESCC patients.


Assuntos
Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/metabolismo , Fibronectinas/genética , MicroRNAs/genética , Vimentina/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Membrana Celular/fisiologia , Movimento Celular , Proliferação de Células , Neoplasias Esofágicas/etiologia , Carcinoma de Células Escamosas do Esôfago/etiologia , Feminino , Fibronectinas/metabolismo , Humanos , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Vimentina/metabolismo
17.
Int J Mol Sci ; 21(15)2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751716

RESUMO

Drugs for the treatment of Alzheimer's disease (AD) are in urgent demand due to the unmet need and the social burden associated with the disease. Curcumin has been historically considered as a beneficial product for anti-aging and AD. However, many efforts to develop curcumin for clinical use are hindered mainly due to its poor bioavailability. Recent development in drug delivery and structural design has resolved these issues. In this study, we identified a small molecule, TML-6, as a potential drug candidate for AD through screening a panel of curcumin derivatives using six biomarker platforms related to aging biology and AD pathogenesis. The structural modification of TML-6 is designed to improve the stability and metabolism of curcumin. Cell biological studies demonstrated that TML-6 could inhibit the synthesis of the ß-amyloid precursor protein and ß-amyloid (Aß), upregulate Apo E, suppress NF-κB and mTOR, and increase the activity of the anti-oxidative Nrf2 gene. In the 3x-Tg AD animal model, TML-6 treatment resulted in significant improvement in learning, suppression of the microglial activation marker Iba-1, and reduction in Aß in the brain. Although TML-6 exhibited a greater improvement in bioavailability as compared to curcumin, formulation optimization and toxicological studies are under development to assure its druggability. Taken together, TML-6 meets the current strategy to develop therapeutics for AD, targeting the combination of the Aß cascade and aging-related biology processes.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Curcumina/farmacologia , Inflamação/tratamento farmacológico , Fator 2 Relacionado a NF-E2/genética , Placa Amiloide/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Curcumina/análogos & derivados , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/genética , Inflamação/patologia , Camundongos , Microglia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Placa Amiloide/genética , Placa Amiloide/patologia
18.
Sensors (Basel) ; 20(3)2020 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-32050454

RESUMO

Geographical social networks (GSN) is an emerging research area. For example, Foursquare, Yelp, and WeChat are all well-known service providers in this field. These applications are also known as location-based services (LBS). Previous studies have suggested that these location-based services may expose user location information. In order to ensure the privacy of the user's location data, the service provider may provide corresponding protection mechanisms for its applications, including spatial cloaking, fuzzy location information, etc., so that the user's real location cannot be easily cracked. It has been shown that if the positioning data provided by the user is not accurate enough, it is still difficult for an attacker to obtain the user's true location. Taking this factor into consideration, our attack method is divided into two stages for the entire attack process: (1) Search stage: cover the area where the targeted user is located with unit discs, and then calculate the minimum dominating set. Use the triangle positioning method to find the minimum precision disc. (2) Inference phase: Considering the existence of errors, an Error-Adjusted Space Partition Attack Algorithm (EASPAA) was proposed during the inference phase. Improved the need for accurate distance information to be able to derive the user's true location. In this study, we focus on the Location Sharing Mechanism with Maximal Coverage Limit to implement the whole attack. Experimental results show that the proposed method still can accurately infer the user's real location even when there is an error in the user's location information.

19.
Sci Rep ; 9(1): 10338, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31316146

RESUMO

Chronic hepatitis B virus (HBV) infection is a major risk factor for the development of hepatocellular carcinoma (HCC), a leading cause of cancer mortality worldwide. Hepatitis B X protein (HBx) and pre-S2 mutant have been proposed as the two most important HBV oncoproteins that play key roles in HCC pathogenesis. Curcumin is a botanical constituent displaying potent anti-inflammatory and anti-cancer properties without toxic side effects. Phytosomal formulation of curcumin has been shown to exhibit enhanced bioavailability, improved pharmacokinetics, and excellent efficacy against many human diseases. However, effectiveness of phytosomal curcumin for HCC treatment remains to be clarified. In this study, we evaluated chemopreventive effect of phytosomal curcumin on HBV-related HCC by using a transgenic mouse model specifically expressing both HBx and pre-S2 mutant in liver. Compared with unformulated curcumin, phytosomal curcumin exhibited significantly greater effects on suppression of HCC formation, improvement of liver histopathology, decrease of lipid accumulation and leukocyte infiltration, and reduction of total tumor volume in transgenic mice. Moreover, phytosomal curcumin exerted considerably stronger effects on activation of anti-inflammatory PPARγ as well as inhibition of pro-inflammatory NF-κB than unformulated curcumin. Furthermore, phytosomal curcumin showed a comparable effect on suppression of oncogenic mTOR activation to unformulated curcumin. Our data demonstrated that phytosomal curcumin has promise for HCC chemoprevention in patients with chronic HBV infection.


Assuntos
Anticarcinógenos/administração & dosagem , Curcumina/administração & dosagem , Vírus da Hepatite B/patogenicidade , Neoplasias Hepáticas Experimentais/prevenção & controle , Animais , Quimioprevenção , Composição de Medicamentos , Antígenos de Superfície da Hepatite B/genética , Vírus da Hepatite B/genética , Hepatite B Crônica/complicações , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas Experimentais/etiologia , Neoplasias Hepáticas Experimentais/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Precursores de Proteínas/genética , Transativadores/genética , Proteínas Virais Reguladoras e Acessórias/genética
20.
Mol Oncol ; 12(7): 1175-1187, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29729074

RESUMO

Although partial hepatectomy (PH) to remove tumors provides a potential cure of hepatocellular carcinoma (HCC), long-term survival of hepatitis B virus (HBV)-related HCC patients after PH remains a big challenge. Early recurrence within 2 years post-PH is associated with the dissemination of primary HCC. However, late recurrence after 2 years post-PH is supposed due to the de novo or a secondary tumor. Since PH initiates liver regeneration (LR), we hypothesize that LR may accelerate tumorigenesis through activation of pre-existing precancerous lesions in the remaining liver. In this study, we explored the potential role of several LR-related factors in the de novo recurrence in a HBV X protein (HBx) transgenic mouse model receiving PH to mimic human HCC development. Following PH, we observed that tumor development was significantly accelerated from 16.9 to 10.4 months in HBx transgenic mice. The expression of suppressor of cytokine signaling (SOCS) family proteins was remarkably suppressed in livers of HBx transgenic relative to non-transgenic mice from early to late stages after PH as compared with non-PH mice. The expression of transforming growth factor-ß (TGF-ß)/Smad pathway, hepatocyte growth factor (HGF), Myc, signal transducer and activator of transcription 3 (STAT3), and ß-Catenin also showed a significant difference between livers of HBx transgenic and non-transgenic mice at variable time points after PH in comparison with non-PH mice. Taken together, our results provide an explanation for the high de novo recurrence of HBV-related HCC after PH, probably through induction of the sequential changes of LR-related SOCS family proteins, growth factors, and transcription factors, which may promote growth on the precancerous remnant liver.


Assuntos
Carcinogênese/patologia , Carcinoma Hepatocelular/virologia , Vírus da Hepatite B/fisiologia , Neoplasias Hepáticas/virologia , Regeneração Hepática , Animais , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/cirurgia , Progressão da Doença , Feminino , Hepatectomia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/cirurgia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Biológicos , Transdução de Sinais , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...