Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Diabetes Res ; 2019: 8463125, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31098384

RESUMO

Mitochondrial fission and fusion are dependent on cellular nutritional states, and maintaining this dynamics is critical for the health of cells. Starvation triggers mitochondrial fusion to maintain bioenergetic efficiency, but during nutrient overloads (as with hyperglycemic conditions), fragmenting mitochondria is a way to store nutrients to avoid waste of energy. In addition to ATP production, mitochondria play an important role in buffering intracellular calcium (Ca2+). We found that in cultured 661W cells, a photoreceptor-derived cell line, hyperglycemic conditions triggered an increase of the expression of dynamin-related protein 1 (DRP1), a protein marker of mitochondrial fission, and a decrease of mitofusin 2 (MFN2), a protein for mitochondrial fusion. Further, these hyperglycemic cells also had decreased mitochondrial Ca2+ but increased cytosolic Ca2+. Treating these hyperglycemic cells with melatonin, a multifaceted antioxidant, averted hyperglycemia-altered mitochondrial fission-and-fusion dynamics and mitochondrial Ca2+ levels. To mimic how people most commonly take melatonin supplements, we gave melatonin to streptozotocin- (STZ-) induced type 1 diabetic mice by daily oral gavage and determined the effects of melatonin on diabetic eyes. We found that melatonin was not able to reverse the STZ-induced systemic hyperglycemic condition, but it prevented STZ-induced damage to the neural retina and retinal microvasculature. The beneficial effects of melatonin in the neural retina in part were through alleviating STZ-caused changes in mitochondrial dynamics and Ca2+ buffering.


Assuntos
Retinopatia Diabética/metabolismo , Dinaminas/metabolismo , Melatonina/farmacologia , Dinâmica Mitocondrial/efeitos dos fármacos , Retina/patologia , Trifosfato de Adenosina/metabolismo , Angiografia , Animais , Cálcio/metabolismo , Diabetes Mellitus Experimental/metabolismo , Eletrorretinografia , Metabolismo Energético , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Neurônios/metabolismo , Estresse Oxidativo , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Neoplasias da Retina/metabolismo , Transdução de Sinais/efeitos dos fármacos
2.
J Biol Rhythms ; 33(2): 151-165, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29671706

RESUMO

Energy expenditure and metabolism in the vertebrate retina are under circadian control, as we previously reported that the overall retinal ATP content and various signaling molecules related to metabolism display daily or circadian rhythms. Changes in the fission and fusion process of mitochondria, the major organelles producing ATP, in retinal photoreceptors are largely dependent on light exposure, but whether mitochondrial dynamics in photoreceptors and retinal neurons are under circadian control is not clear. Herein, we investigated the possible roles of circadian oscillators in regulating mitochondrial dynamics, mitophagy, and redox states in the chicken retina and mammalian photoreceptors. After entrainment to 12:12-h light-dark (LD) cycles for several days followed by free-running in constant darkness (DD), chicken embryonic retinas and cone-derived 661W cells were collected in either LD or DD at 6 different zeitgeber time (ZT) or circadian time (CT) points. The protein expression of mitochondrial dynamin-related protein 1 (DRP1), mitofusin 2 (MFN2), and PTEN-induced putative kinase 1 (PINK1) displayed daily rhythms, but only DRP1 was under circadian control in the chicken retinas and cultured 661W cells. In addition, cultured chicken retinal cells responded to acute oxidative stress differently from 661W cells. Using pMitoTimer as a mitochondrial redox indicator, we found that the mitochondrial redox states were more affected by light exposure than regulated by circadian oscillators. Thus, this study demonstrates that the influence of cyclic lights might outweigh the circadian regulation of complex mitochondrial dynamics in light-sensing retinal cells.


Assuntos
Ritmo Circadiano/fisiologia , Dinâmica Mitocondrial , Fotoperíodo , Células Fotorreceptoras de Vertebrados/fisiologia , Animais , Relógios Biológicos , Células Cultivadas , Galinhas , Escuridão , Luz , Mitocôndrias/genética , Mitocôndrias/fisiologia , Oxirredução , Retina/citologia , Retina/fisiologia
3.
Front Mol Neurosci ; 10: 394, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29259539

RESUMO

L-type voltage-gated calcium channels (LTCCs) regulate tonic neurotransmitter release from sensory neurons including retinal photoreceptors. There are three types of LTCCs (Cav1.2, Cav1.3, and Cav1.4) expressed in the retina. While Cav1.2 is expressed in all retinal cells including the Müller glia and neurons, Cav1.3 and Cav1.4 are expressed in the retinal neurons with Cav1.4 exclusively expressed in the photoreceptor synaptic terminals. Mutations in the gene encoding Cav1.4 cause incomplete X-linked congenital stationary night blindness in humans. Even though Cav1.3 is present in the photoreceptor inner segments and the synaptic terminals in various vertebrate species, its role in vision is unclear, since genetic alterations in Cav1.3 are not associated with severe vision impairment in humans or in Cav1.3-null (Cav1.3-/-) mice. However, a failure to regulate Cav1.3 was found in a mouse model of Usher syndrome, the most common cause of combined deafness and blindness in humans, indicating that Cav1.3 may contribute to retinal function. In this report, we combined physiological and morphological data to demonstrate the role of Cav1.3 in retinal physiology and function that has been undervalued thus far. Through ex vivo and in vivo electroretinogram (ERG) recordings and immunohistochemical staining, we found that Cav1.3 plays a role in retinal light responses and synaptic plasticity. Pharmacological inhibition of Cav1.3 decreased ex vivo ERG a- and b-wave amplitudes. In Cav1.3-/- mice, their dark-adapted ERG a-, b-wave, and oscillatory potential amplitudes were significantly dampened, and implicit times were delayed compared to the wild type (WT). Furthermore, the density of ribbon synapses was reduced in the outer plexiform layer of Cav1.3-/- mice retinas. Hence, Cav1.3 plays a more prominent role in retinal physiology and function than previously reported.

4.
Invest Ophthalmol Vis Sci ; 58(1): 106-118, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28114566

RESUMO

Purpose: The purpose of this study was to determine the effects of metformin on dysfunctional retinas in obesity-induced type 2 diabetic mice. Methods: A high-fat diet (HFD)-induced diabetic mouse model (C57BL/6J) was used in this study. After 2 months of the HFD regimen, HFD mice were given daily metformin through oral gavage. Body weights, glucose tolerance, and retinal light responses were monitored regularly. Fluorescein angiography (FA) was used to assess changes in retinal vasculature. Ocular tissues (retina, vitreous, and lens) were harvested and analyzed for molecular changes as determined by immunofluorescent staining, Western blot analysis, and cytokine profiling. Results: Starting 1 month after the diet regimen, mice fed the HFD had mildly compromised retinal light responses as measured by electroretinography (ERG), which worsened over time compared to that in the control. In HFD mice treated with metformin, systemic glucose levels reverted back to normal, and their weight gain slowed. Metformin reversed HFD-induced changes in phosphorylated protein kinase B (pAKT), extracellular signal-regulated kinase (pERK), and 5'AMP-activated protein kinase (pAMPK) in the retina. However, metformin treatments for 3 months did not restore the retinal light responses nor lessen the HFD-induced retinal neovascularization, even though it did reduce intraocular inflammation. Conclusions: Although metformin was able to reverse systemic changes induced by HFD, it was not able to restore HFD-caused retinal light responses or deter neovascularization.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2/tratamento farmacológico , Retinopatia Diabética/prevenção & controle , Metformina/farmacologia , Obesidade/complicações , Retina/patologia , Animais , Glicemia/metabolismo , Western Blotting , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Retinopatia Diabética/diagnóstico , Retinopatia Diabética/etiologia , Eletrorretinografia , Angiofluoresceinografia , Fundo de Olho , Hipoglicemiantes/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/diagnóstico , Obesidade/metabolismo , Retina/fisiopatologia , Vasos Retinianos/patologia
5.
PLoS One ; 11(6): e0157543, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27304911

RESUMO

Diabetic retinopathy (DR) is the leading cause of blindness among American adults above 40 years old. The vascular complication in DR is a major cause of visual impairment, making finding therapeutic targets to block pathological angiogenesis a primary goal for developing DR treatments. MicroRNAs (miRs) have been proposed as diagnostic biomarkers and potential therapeutic targets for various ocular diseases including DR. In diabetic animals, the expression levels of several miRs, including miR-150, are altered. The expression of miR-150 is significantly suppressed in pathological neovascularization in mice with hyperoxia-induced retinopathy. The purpose of this study was to investigate the functional role of miR-150 in the development of retinal microvasculature complications in high-fat-diet (HFD) induced type 2 diabetic mice. Wild type (WT) and miR-150 null mutant (miR-150-/-) male mice were given a HFD (59% fat calories) or normal chow diet. Chronic HFD caused a decrease of serum miR-150 in WT mice. Mice on HFD for 7 months (both WT and miR-150-/-) had significant decreases in retinal light responses measured by electroretinograms (ERGs). The retinal neovascularization in miR-150-/--HFD mice was significantly higher compared to their age matched WT-HFD mice, which indicates that miR-150 null mutation exacerbates chronic HFD-induced neovascularization in the retina. Overexpression of miR-150 in cultured endothelial cells caused a significant reduction of vascular endothelial growth factor receptor 2 (VEGFR2) protein levels. Hence, deletion of miR-150 significantly increased the retinal pathological angiogenesis in HFD induced type 2 diabetic mice, which was in part through VEGFR2.


Assuntos
Diabetes Mellitus Experimental/genética , Retinopatia Diabética/genética , Dieta Hiperlipídica/efeitos adversos , MicroRNAs/genética , Animais , Células Cultivadas , Diabetes Mellitus Experimental/etiologia , Diabetes Mellitus Experimental/metabolismo , Retinopatia Diabética/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Fluorescência , Retina/metabolismo , Retina/patologia , Vasos Retinianos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...