Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 14(14): 5472-5481, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35322845

RESUMO

The development of single-component organic solar cells (SCOSCs) using only one photoactive component with a chemically bonded D/A structure has attracted increasing research attention in recent years. At represent, most relevant studies focus on comparing the performance difference between a donor-acceptor (D-A) conjugated block copolymer (CBC) and the commensurate blending systems based on the same donor and acceptor segments, and still there are no reports on the impact of the segment ratio for a certain D-A CBC on the resultant photovoltaic performance. In this study, we synthesized a D-A all-conjugated polymers based on an n-type PNDI2T block and a p-type PBDB-T donor block but with three different segment ratios (P1-P3) and demonstrate the significance of the D/A segment ratio on photovoltaic performance. Our results reveal that the n-type PNDI2T block plays a more critical role in the inter/intra-chain charge transfer. P1 with a higher content of PNDI2T delivers superior exciton dissociation and charge transfer behavior than P2 and P3, benefitting from its more balanced hole/electron mobility. In addition, a higher packing regularity associated with a more dominant face-on orientation is also observed for P1. As a result, SCOSC based on P1 exhibits the highest PCE among the synthesized CBCs. It also possesses a minimal energy loss due to the better suppressed non-radiative recombination loss. This work provides the first discussion of the impact of the segment ratio for a D-A all-conjugated block copolymer and signifies the critical role of the n-type segment in designing high-performance single-component CBCs.

2.
J Pathol Inform ; 4: 20, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23967385

RESUMO

BACKGROUND: In general, surgical pathology reviews report protein expression by tumors in a semi-quantitative manner, that is, -, -/+, +/-, +. At the same time, the experimental pathology literature provides multiple examples of precise expression levels determined by immunohistochemical (IHC) tissue examination of populations of tumors. Natural language processing (NLP) techniques enable the automated extraction of such information through text mining. We propose establishing a database linking quantitative protein expression levels with specific tumor classifications through NLP. MATERIALS AND METHODS: Our method takes advantage of typical forms of representing experimental findings in terms of percentages of protein expression manifest by the tumor population under study. Characteristically, percentages are represented straightforwardly with the % symbol or as the number of positive findings of the total population. Such text is readily recognized using regular expressions and templates permitting extraction of sentences containing these forms for further analysis using grammatical structures and rule-based algorithms. RESULTS: Our pilot study is limited to the extraction of such information related to lymphomas. We achieved a satisfactory level of retrieval as reflected in scores of 69.91% precision and 57.25% recall with an F-score of 62.95%. In addition, we demonstrate the utility of a web-based curation tool for confirming and correcting our findings. CONCLUSIONS: The experimental pathology literature represents a rich source of pathobiological information, which has been relatively underutilized. There has been a combinatorial explosion of knowledge within the pathology domain as represented by increasing numbers of immunophenotypes and disease subclassifications. NLP techniques support practical text mining techniques for extracting this knowledge and organizing it in forms appropriate for pathology decision support systems.

3.
Plant Methods ; 8(1): 45, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23131141

RESUMO

BACKGROUND: Accurate characterization of complex plant phenotypes is critical to assigning biological functions to genes through forward or reverse genetics. It can also be vital in determining the effect of a treatment, genotype, or environmental condition on plant growth or susceptibility to insects or pathogens. Although techniques for characterizing complex phenotypes have been developed, most are not cost effective or are too imprecise or subjective to reliably differentiate subtler differences in complex traits like growth, color change, or disease resistance. RESULTS: We designed an inexpensive imaging protocol that facilitates automatic quantification of two-dimensional visual phenotypes using computer vision and image processing algorithms applied to standard digital images. The protocol allows for non-destructive imaging of plants in the laboratory and field and can be used in suboptimal imaging conditions due to automated color and scale normalization. We designed the web-based tool PhenoPhyte for processing images adhering to this protocol and demonstrate its ability to measure a variety of two-dimensional traits (such as growth, leaf area, and herbivory) using images from several species (Arabidopsis thaliana and Brassica rapa). We then provide a more complicated example for measuring disease resistance of Zea mays to Southern Leaf Blight. CONCLUSIONS: PhenoPhyte is a new cost-effective web-application for semi-automated quantification of two-dimensional traits from digital imagery using an easy imaging protocol. This tool's usefulness is demonstrated for a variety of traits in multiple species. We show that digital phenotyping can reduce human subjectivity in trait quantification, thereby increasing accuracy and improving precision, which are crucial for differentiating and quantifying subtle phenotypic variation and understanding gene function and/or treatment effects.

4.
J Med Syst ; 36(4): 2431-48, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21537851

RESUMO

As a new concept that emerged in the middle of 1990's, data mining can help researchers gain both novel and deep insights and can facilitate unprecedented understanding of large biomedical datasets. Data mining can uncover new biomedical and healthcare knowledge for clinical and administrative decision making as well as generate scientific hypotheses from large experimental data, clinical databases, and/or biomedical literature. This review first introduces data mining in general (e.g., the background, definition, and process of data mining), discusses the major differences between statistics and data mining and then speaks to the uniqueness of data mining in the biomedical and healthcare fields. A brief summarization of various data mining algorithms used for classification, clustering, and association as well as their respective advantages and drawbacks is also presented. Suggested guidelines on how to use data mining algorithms in each area of classification, clustering, and association are offered along with three examples of how data mining has been used in the healthcare industry. Given the successful application of data mining by health related organizations that has helped to predict health insurance fraud and under-diagnosed patients, and identify and classify at-risk people in terms of health with the goal of reducing healthcare cost, we introduce how data mining technologies (in each area of classification, clustering, and association) have been used for a multitude of purposes, including research in the biomedical and healthcare fields. A discussion of the technologies available to enable the prediction of healthcare costs (including length of hospital stay), disease diagnosis and prognosis, and the discovery of hidden biomedical and healthcare patterns from related databases is offered along with a discussion of the use of data mining to discover such relationships as those between health conditions and a disease, relationships among diseases, and relationships among drugs. The article concludes with a discussion of the problems that hamper the clinical use of data mining by health professionals.


Assuntos
Mineração de Dados , Atenção à Saúde , Algoritmos , Pesquisa Biomédica , Mineração de Dados/métodos , Setor de Assistência à Saúde
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...