Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 940: 173598, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-38823690

RESUMO

Cloud seeding is well known to address water shortage problems caused by droughts by adding more precipitation and consequent runoff. Unlike previous studies, this study investigates another positive effect of cloud seeding on the activation of vegetation by integrating numerical cloud seeding simulations and processed-based modeling of various ecohydrological components. As the carbon cycle is closely related to the hydrological processes in ecosystems, we adopt the RHESSys ecohydrological modeling to synthetically simulate runoff and soil moisture along with primary productivity and vegetation respiration. Numerical simulations with and without cloud seeding are generated by the WRF-ARW model for the Boryeong Dam basin, one of the basins vulnerable to droughts, in 2021. The cloud seeding simulations of two cases are input into the RHESSys model to examine changes in hydrological and ecological components due to the added amount of precipitation. The results exhibit significant increases in annual precipitation (18 %) and runoff (22 %), and enhanced soil moisture stimulating the ecological components such as GPP and NPP, especially in spring. Cloud seeding can be considered to create optimal conditions for vegetation to absorb or sequester carbon from the atmosphere, thereby boosting vegetation growth. Additionally, the time-lagged correlations between cloud seeding and soil moisture, GPP, NPP, and respiration suggest that vegetation activity is highly dependent on antecedent 1-2 months occurrences of cloud seeding. This study implies that the cloud seeding effect on additional NPP can be considered as a countermeasure of the global average forest loss, which means that carbon emission rise in the global warming era can be partly alleviated by cloud seeding.

2.
Eur J Pharmacol ; 835: 169-178, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-30096297

RESUMO

11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) is a cortisol regenerating enzyme that amplifies tissue glucocorticoid levels, especially in the liver and adipose tissue. Knockout mice or a selective inhibitor of 11ß-HSD1 improves metabolic syndrome parameters in preclinical models and human clinical trials. Here, we evaluated the therapeutic potential of INU-101, a potent and selective oral inhibitor of 11ß-HSD1. The in vitro activity of 11ß-HSD1 was measured using the homogeneous time-resolved fluorescence (HTRF) assay. Differentiated adipocytes were used to evaluate the cellular 11ß-HSD1 activity. To determine the inhibitory effects on 11ß-HSD1 in tissues, we performed ex vivo studies using liver and adipose tissue isolated from C57BL/6 J mice and Cynomolgus monkeys. KKAy mice, ob/ob mice and ZDF rats were administered INU-101 to evaluate whether this compound ameliorated metabolic abnormalities in obese and diabetic animals. INU-101 had highly potent inhibitory activity in mouse, monkey and human 11ß-HSD1, derived from liver microsomes. The oral administration of INU-101 significantly inhibited 11ß-HSD1 activity in the liver and adipose tissue of mice and monkeys. In KKAy mice, ob/ob mice and ZDF rats, the oral administration of INU-101 enhanced insulin sensitivity and lowered the fasting blood glucose level. Furthermore, INU-101 treatment decreased the body weight and ameliorated an improved lipid profile in the diabetic mouse model. These results suggest that the 11ß-HSD1 inhibitor, INU-101 may serve as a novel drug candidate for the treatment of type 2 diabetes and metabolic syndrome.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , Adamantano/análogos & derivados , Adamantano/farmacologia , Inibidores Enzimáticos/farmacologia , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/química , Células 3T3-L1 , Adamantano/química , Adamantano/farmacocinética , Animais , Peso Corporal/efeitos dos fármacos , Humanos , Camundongos , Modelos Moleculares , Conformação Proteica , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...