Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Acta Biomater ; 134: 686-701, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34358695

RESUMO

Thrombolysis is a standard treatment for rapidly restoring blood flow. However, the application of urokinase-type plasminogen activator (Uk) in clinical therapy is limited due to its nonspecific distribution and inadequate therapeutic accumulation. Precise thrombus imaging and site-specific drug delivery can enhance the diagnostic and therapeutic efficacy for thrombosis. Accordingly, we developed a P-selectin-specific, photothermal theranostic nanocomposite for thrombus-targeted codelivery of Uk and indocyanine green (ICG, a contrast agent for near-infrared (NIR) fluorescence imaging). We evaluated its capabilities for thrombus imaging and enzyme/hyperthermia combined thrombolytic therapy. Mesoporous silica-coated gold nanorods (Si-AuNRs) were functionalized with an arginine-rich peptide to create an organic template for the adsorption of ICG and fucoidan (Fu), an algae-derived anticoagulant. Uk was loaded into the SiO2 pores of the Si-AuNRs through the formation of a Fu-Uk-ICG complex on the peptide-functionalized template. The Fu-Uk/ICG@SiAu NRs nanocomposite increased the photostability of ICG and improved its targeting/accumulation at blood clot sites with a strong NIR fluorescence intensity for precise thrombus imaging. Furthermore, ICG incorporated into the nanocomposite enhanced the photothermal effect of Si-AuNRs. Fu, as a P-selectin-targeting ligand, enabled the nanocomposite to target a thrombus site where platelets were activated. The nanocomposite enabled a faster release of Uk for rapid clearing of blood clots and a slower release of Fu for longer lasting prevention of thrombosis regeneration. The nanocomposite with multiple functions, including thrombus-targeting drug delivery, photothermal thrombolysis, and NIR fluorescence imaging, is thus an advanced theranostic platform for thrombolytic therapy with reduced hemorrhaging risk and enhanced imaging/thrombolysis efficiency. STATEMENT OF SIGNIFICANCE: Herein, for the first time, a P-selectin specific, photothermal theranostic nanocomposite for thrombus-targeted co-delivery of urokinase and NIR fluorescence contrast agent indocyanine green (ICG) was developed. We evaluated the potential of this theranostic nanocomposite for thrombus imaging and enzyme/hyperthermia combined thrombolytic therapy. The nanocomposite showed multiple functions including thrombus targeting and imaging, and photothermal thrombolysis. Besides, it allowed faster release of the thrombolytic urokinase for rapidly clearing blood clots and slower release of a brown algae-derived anticoagulant fucoidan (also acting as a P-selectin ligand) for prevention of thrombosis regeneration. The nanocomposite is thus a new and advanced theranostic platform for targeted thrombolytic therapy.


Assuntos
Nanocompostos , Nanopartículas , Trombose , Anticoagulantes/farmacologia , Linhagem Celular Tumoral , Meios de Contraste , Fibrinolíticos/farmacologia , Humanos , Verde de Indocianina , Fototerapia , Medicina de Precisão , Dióxido de Silício , Nanomedicina Teranóstica , Trombose/diagnóstico por imagem , Trombose/tratamento farmacológico
3.
Mater Sci Eng C Mater Biol Appl ; 114: 111064, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32994013

RESUMO

P-selectin overexpressed on activated endothelial cells and platelets is a new target for treatment of cancers and cardiovascular diseases such as atherosclerosis and thrombosis. In this study, depolymerized low molecular weight fucoidan (LMWF8775) and a thermolysin-hydrolyzed protamine peptide (TPP1880) were prepared. TPP1880 and LMWF8775 were able to form self-assembled complex nanoparticles (CNPs). The formation of TPP1880/LMWF8775 CNPs was characterized by Fourier-transform infrared spectra, circular dichroism spectra and isothermal titration calorimetry. The CNPs selectively targeted PMA-stimulated, inflamed endothelial cells (HUVECs) with high expression of P-selectin. Gd-DTPA MRI contrast agent was successfully loaded in the CNPs with better T1 relaxivity and selectively accumulated in the activated HUVECs with increased MRI intensity and reduced cytotoxicity as compared to free Gd-DTPA. Our results suggest that the TPP1880/LMWF8775 CNPs may have potential in future for early diagnosis of cardiovascular diseases and cancers in which the endothelium is inflamed or activated.


Assuntos
Gadolínio DTPA , Nanopartículas , Meios de Contraste , Células Endoteliais , Endotélio , Imageamento por Ressonância Magnética , Peptídeos , Polissacarídeos
4.
Acta Biomater ; 96: 468-479, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31260820

RESUMO

Fibrinolytic treatments for venous or arterial thrombotic syndromes using systemic administration of thrombolytics, such as streptokinase, can induce life-threatening bleeding complications. In this study, we offer the first proof of concept for a targeted photothermal fibrin clot prevention and reduction technology using macrophages loaded with polypyrrole-polyethylenimine nanocomplexes (Ppy-PEI NCs) and subjected to near-infrared radiation (NIR). We first show that the developed Ppy-PEI NCs could be taken up by defensive macrophages in vitro through endocytosis. The Ppy-PEI NCs generated local hyperthermia upon NIR treatment, which appeared to produce reactive oxygen species in Ppy-PEI NC-loaded macrophages. Preliminary evidence of efficacy as an antithrombotic tool is provided, in vitro, using fibrinogen-converted fibrin clots, and in vivo, in a rat femoral vascular thrombosis model generated by exposure to ferric chloride substance. The in vivo biocompatibility, photothermal behavior, biodistribution, and histological observation of cellular interactions with the Ppy-PEI NCs in the rat model provide rationale in support of further preclinical studies. This Ppy-PEI NC/NIR-based method, which uses a unique macrophage-guided targeting approach to prevent and lyse fibrin clots, may potentially overcome some of the disadvantages of current thrombolytic treatments. STATEMENT OF SIGNIFICANCE: Fibrinolytic treatments for venous or arterial thrombotic syndromes using systemic administration of thrombolytics, such as streptokinase, can induce life-threatening bleeding complications. In this study, we offer the first proof of concept for a targeted photothermal fibrin clot reduction technology using macrophages loaded with polypyrrole-polyethylenimine nanocomplexes (Ppy-PEI NCs) and subjected to near-infrared radiation (NIR). We first show that the developed Ppy-PEI NCs can be taken up by defensive macrophages in vitro through endocytosis. The Ppy-PEI NCs generated local hyperthermia upon NIR treatment, which appeared to produce reactive oxygen species in Ppy-PEI NC-loaded macrophages. Preliminary evidence of efficacy as an antithrombotic tool is provided, in vitro, using fibrinogen-converted fibrin clots, and in vivo, in a rat femoral vascular thrombosis model generated by exposure to ferric chloride substance. The in vivo biocompatibility, photothermal behavior, biodistribution, and histological observation of cellular interactions with the Ppy-PEI NCs in the rat model provide rationale in support of further preclinical studies. This Ppy-PEI NC/NIR-based method, which uses a unique macrophage-guided targeting approach to disintegrate fibrin clots, may potentially overcome some of the disadvantages of current thrombolytic treatments.


Assuntos
Materiais Biomiméticos/química , Fibrina/metabolismo , Hipertermia Induzida , Macrófagos/citologia , Nanopartículas/química , Polietilenoimina/farmacologia , Polímeros/farmacologia , Pirróis/farmacologia , Trombose/prevenção & controle , Animais , Endocitose , Humanos , Raios Infravermelhos , Camundongos , Camundongos Endogâmicos ICR , Nanopartículas/ultraestrutura , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Temperatura , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...