Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Emerg Microbes Infect ; 12(2): 2249130, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37585273

RESUMO

Antigen sparing is an important strategy for pandemic vaccine development because of the limitation of worldwide vaccine production during disease outbreaks. However, several clinical studies have demonstrated that the current aluminum (Alum)-adjuvanted influenza vaccines fail to sufficiently enhance immune responses to meet licensing criteria. Here, we used pandemic H7N9 as a model virus to demonstrate that a 10-fold lower amount of vaccine antigen combined with Alum and TLR9 agonist can provide stronger protective effects than using Alum as the sole adjuvant. We found that the Alum/CpG 1018 combination adjuvant could induce more robust virus-specific humoral immune responses, including higher total IgG production, hemagglutination-inhibiting antibody activity, and neutralizing antibody titres, than the Alum-adjuvanted formulation. Moreover, this combination adjuvant shifted the immune response toward a Th1-biased immune response. Importantly, the Alum/CpG 1018-formulated vaccine could confer better protective immunity against H7N9 challenge than that adjuvanted with Alum alone. Notably, the addition of CpG 1018 to the Alum-adjuvanted H7N9 whole-virion vaccine exhibited an antigen-sparing effect without compromising vaccine efficacy. These findings have significant implications for improving Alum-adjuvanted influenza vaccines using the approved adjuvant CpG 1018 for pandemic preparedness.


Assuntos
Subtipo H7N9 do Vírus da Influenza A , Vacinas contra Influenza , Receptor Toll-Like 9 , Adjuvantes Imunológicos , Alumínio , Anticorpos Antivirais , Receptor Toll-Like 9/agonistas , Vírion
2.
J Phys Chem A ; 113(17): 4954-62, 2009 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-19385677

RESUMO

We present detailed investigations of our previously reported observations of the 3(1)Delta(g) and 4(1)Delta(g) Rydberg states having separated-atom limits of Na(3s) + Na(4d) and Na(3s) + Na(4f), respectively, of Na(2) using high-resolution cw optical-optical double resonance spectroscopic measurements and analyzing the assigned rovibrational energy levels both by the individual linear fit method and the Dunham polynomial fit method. We have sorted out e/f-parity observed energy levels, and then from the Dunham polynomial fits of the e-parity levels, we have derived molecular constants and constructed Rydberg-Klein-Rees potentials of the 3(1)Delta(g) and 4(1)Delta(g) states, which appear to be twin states with an avoided crossing at R(c) = 4.10 A and a splitting of DeltaE(c) = 94 cm(-1). The potentials are in good agreement with the ab initio calculations and linear fit results. The Lambda-doubling splittings and the (f-d) l-mixing are investigated. A detailed discussion is focused on the adiabatic interaction of the perturbed molecular wave functions/states causing mutual amplitude/intensity sharing giving rise to avoided crossing between the 3(1)Delta(g) and 4(1)Delta(g) states.

3.
J Chem Phys ; 129(2): 024303, 2008 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-18624529

RESUMO

The nd (1)Delta(g) (n = 6, 7, and 8) Rydberg states of Na(2) correlating with the asymptotic limits of Na(3s) + Na(nd) have been observed using high-resolution cw optical-optical double resonance spectroscopy corresponding to the rovibrational transitions X (1)Sigma(g)(+)(v("),J(")) + h nu(pump) --> B (1)Pi(u)(v('),J(')) + h nu(probe) --> nd (1)Delta(g)(v,J). Totals of 104, 83, and 45 identified rovibrational e/f-parity levels in the ranges of v = 0-11, 11 < or = J < or = 83; v = 0-10, 11 < or = J < or = 83; and v = 0-10, 11 < or = J < or = 65, have been assigned to the 6d (1)Delta(g), 7d (1)Delta(g), and 8d (1)Delta(g) states, respectively. Using the observed quantum levels, molecular constants were determined from the Dunham fits of the e-parity levels and the Rydberg-Klein-Rees potential curves were constructed for the nd (1)Delta(g)(n = 6-8) states. The characteristics of the estimated Lambda-doubling splitting constants (q(0), q(v), and mu) with n(= 5-8) of the nd (1)Delta(g) series have been explored. Detailed investigations reveal that the nd (1)Delta(g)(n = 6-8) states involve L uncoupling from the internuclear axis and each of these states is affected by an asymmetric perturbation caused by the up and down adjacent states. The rotational-branch intensity and position anomalies in the observed spectra of the nd (1)Delta(g) series (n = 5-8) of Na(2) lead to the conclusion that due to the effects of the L-uncoupling perturbations, the same l complexes approaching the same ion-core limits result in the same l-mixing processes which lead to the formation of the supercomplexes due to the anisotropy of the molecular-ion [Na(2)(+)(3s)] field. This would open up opportunities to study the effects of L uncoupling and perturbations in the nd series and high Rydberg states of other alkali dimers.

4.
J Phys Chem A ; 111(39): 9764-8, 2007 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-17850121

RESUMO

The 71Pig Rydberg state of Na2 correlating with the separated atom limit Na(3s) + Na(5p) has been observed using high-resolution cw optical-optical double resonance spectroscopy. A total of 104 identified rovibrational levels in the range v = 0-12 and 11

5.
J Chem Phys ; 123(22): 224303, 2005 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-16375472

RESUMO

The phenomenon of electronic orbital angular momentum L uncoupled from its internuclear axis has been observed in the sodium dimer using high-resolution cw optical-optical double-resonance spectroscopy. When L uncoupling occurs, the degeneracy of Lambda doubling is removed. In our experiment, the intermediate B (1)Pi(u) state of Na(2) is excited from the thermally populated ground X (1)Sigma(g) (+) state by a single-line Ar(+) laser. Then, a single-mode dye laser is used to probe the Rydberg states from the intermediate state. The signals are detected by monitoring the UV fluorescence from the triplet gerade states back to the a (3)Sigma(u) (+) state via collision energy transfer. Under our experimental resolution, the splitting of Lambda doubling in the 5 (1)Delta(g) state of Na(2) can be measured. A total of 136 rovibronic levels with ef parities have been assigned to the 5 (1)Delta(g) state. The Lambda-splitting constants deduced from these data are q(0)=0.376(90)x10(-4) cm(-1), q(v)=0.114(6)x10(-4) cm(-1), and mu=0.76(33)x10(-8) cm(-1). In general, the Lambda splitting of the Delta states is considerably smaller than that of the Pi states. However, the first-order splitting constants q(0) and q(v) reported here are larger than those in the B (1)Pi(u) state. This is due to the L uncoupling of the Rydberg states.

6.
J Chem Phys ; 121(21): 10513-8, 2004 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-15549934

RESUMO

The doubly excited valence (3p+3p) 2 (1)Delta(g) state of Na(2) is experimentally observed by using optical-optical double resonance spectroscopy. A single line Ar(+) laser (a total of nine lines) was used to pump the sodium dimers from thermally populated ground state X (1)Sigma(g) (+) to the intermediate B (1)Pi(u) state. Then, a single mode Ti:sapphire laser was used to probe the doubly excited 2 (1)Delta(g) state. Violet fluorescence emitted from the highly excited states (mainly 2 (3)Pi(g) or 3 (3)Pi(g) states which are transferred from 2 (1)Delta(g) state via collision) to the a (3)Sigma(u) (+) state was monitored by a filtered photomultiplier tube (PMT). A total of 582 rovibrational levels of 2 (1)Delta(g) state were observed, identified, and assigned to the vibrational and rotational quantum numbers in the range of 0< or =v< or =28 and 11< or =J< or =99, respectively. The absolute vibrational quantum number assignment was verified by comparing the totally resolved fluorescence with the calculated Franck-Condon factors between 2 (1)Delta(g) state and B (1)Pi(u) state. Dunham coefficients and Rydberg-Klein-Rees potential curve were derived from these observed quantum levels. The primary molecular constants of Na(2) 2 (1)Delta(g) state are T(e)=32 416.759(15) cm(-1), omega(e)=124.8484(36) cm(-1), B(e)=0.119 158(3) cm(-1), and R(e)=3.508 20(5) A.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...