Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Lett ; 23(5): 1692-1697, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33621105

RESUMO

We discovered a unique synthetic route to construct 2H-pyran-containing tetracyclic dithienocyclopentapyran (DTCP) and dibenzocyclopentapyran (DBCP) architectures. The synthesis involves an acid-induced dehydration cyclization followed by a [1,5] hydride-shift isomerization to form a cyclopentanone moiety which was converted to the pyran-embedded tetracyclic products by a CuI-catalyzed intramolecular C-O bond formation in good yield. DTCP was used as a building block to prepare an acceptor-donor-acceptor (A-D-A) type n-type material DTCP-BC leading to a solar cell efficiency of 9.32%.

2.
ACS Appl Mater Interfaces ; 11(36): 33179-33187, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31416309

RESUMO

Benzene-based 1,1-dicyanomethylene-3-indanone (IC) derivatives have been widely utilized as the end-group to construct acceptor-donor-acceptor type nonfullerene acceptors (A-D-A type NFAs). The extension of the end-group conjugation of nonfullerene acceptors (NFAs) is a rational strategy to facilitate intermolecular stacking of the end-groups which are responsible for efficient electron transportation. A bicyclic benzothiophene-based end-group acceptor, 2-(3-oxo-2,3-dihydro-1H-benzo[b]cyclopenta[d]thiophen-1-ylidene)malononitrile, denoted as α-BC was designed and synthesized. The Knoevenagel condensation of the unsymmetrical 1,3-diketo-precursor with one equivalent of malononitrile selectively reacts with the keto group attached at the α-position of the thiophene unit, leading to the isomerically pure benzothiophene-fused α-BC. The well-defined α-BC with extended conjugation was condensed with three different ladder-type diformylated donors to form three new A-D-A NFAs named BDCPDT-BC, DTCC-BC, and ITBC, respectively. The corresponding IC-based BDCPDT-IC, DTCC-IC, and ITIC model compounds were also synthesized for comparison. The incorporation of the electron-rich benzothiophene unit in the end-group upshifts the lowest unoccupied molecular orbital energy levels of the NFAs, which beneficially enlarges the Voc values. On the other hand, the benzothiophene unit in α-BC not also imparts an optical transition in the shorter wavelengths around 340-400 nm for a better light harvesting ability but also promotes the antiparallel π-π stacking of the end-groups for efficient electron transport. The organic photovoltaic cell devices using a PBDB-T polymer and BC-based NFAs all showed the improved Voc and Jsc values. The BDCPDT-BC- and DTCC-BC-based devices exhibited a power conversion efficiency (PCE) of 10.82 and 10.74%, respectively, which outperformed the corresponding BDCPDT-IC-, and DTCC-IC-based devices (9.33 and 9.25%). More importantly, the ITBC-based device delivered the highest PCE of 12.07% with a Jsc of 19.90 mA/cm2, a Voc of 0.94 V, and an fill factor of 64.51%, representing a 14% improvement relative to the traditional ITIC-based device (10.05%).

3.
ACS Appl Mater Interfaces ; 9(50): 43861-43870, 2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29165989

RESUMO

A new class of additive materials bis(pentafluorophenyl) diesters (BFEs) where the two pentafluorophenyl (C6F5) moieties are attached at the both ends of a linear aliphatic chain with tunable tether lengths (BF5, BF7, and BF13) were designed and synthesized. In the presence of BF7 to restrict the migration of fullerene by hand-grabbing-like supramolecular interactions induced between the C6F5 groups and the surface of fullerene, the P3HT:PC61BM:BF7 device showed stable device characteristics after thermal heating at 150 °C for 25 h. The morphologies of the active layers were systematically investigated by optical microscopy, grazing-incidence small-angle X-ray scattering (GISAXS), and atomic force microscopy. The tether length between the two C6F5 groups plays a pivotal role in controlling the intermolecular attractions. BF13 with a long and flexible tether might form a BF13-fullerene sandwich complex that fails to prevent fullerene's movement and aggregation, while BF5 with too short tether length decreases the possibility of interactions between the C6F5 groups and the fullerenes. BF7 with the optimal tether length has the best ability to stabilize the morphology. In sharp contrast, the nonfluorinated BP7 analogue without C6F5-C60 physical interactions does not have the capability of morphological stabilization, unambiguously revealing the necessity of the C6F5 group. Most importantly, the function of BF7 can be also applied to the high-performance PffBT4BT-2OD:PC71BM system, which exhibited an original PCE of 8.80%. After thermal heating at 85 °C for 200 h, the efficiency of the PffBT4BT-2OD:PC71BM:BF7 device only decreased slightly to 7.73%, maintaining 88% of its original efficiency. To the best of our knowledge, this is the first time that the thermal-driven morphological evolution of the high-performance PffBT4BT-2OD polymer has been investigated, and its morphological stability in the inverted device can be successfully preserved by the incorporation of BF7. This research also demonstrates that BF7 is not only effective with PC61BM but also to PC71BM.

4.
ACS Appl Mater Interfaces ; 9(48): 42035-42042, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29125280

RESUMO

In this research, a haptacyclic carbazole-based dithienocyclopentacarbazole (DTCC) ladder-type structure was formylated to couple with two 1,1-dicyanomethylene-3-indanone (IC) moieties, forming a new nonfullerene acceptor DTCCIC-C17 using a bulky branched 1-octylnonayl side chain at the nitrogen of the embedded carbazole and four 4-octylphenyl groups at the sp3-carbon bridges. The rigid and coplanar main-chain backbone of the DTCC core provides a broad light-absorbing window and a higher-lying LUMO energy level, whereas the bulky flanked side chains reduce intermolecular interactions, making DTCCIC-C17 amorphous with excellent solution processability. The DTCCIC-C17 as an acceptor is combined with a medium band gap polymer poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione))] (PBDB-T) as the donor in the active layer to obtain suitable highest occupied molecular orbital/lowest unoccupied molecular orbital energy alignments and complimentary absorption. The devices with an inverted configuration (ITO/ZnO/active layer/MoO3/Ag) without using an aqueous poly(3,4-ethylenedioxythiophene) polystyrene sulfonate layer were fabricated for better device stability. When the diiodooctane-treated PBDB-T:DTCCIC-C17 active layer was thermally annealed at 50 °C for 10 min, the device achieved the highest efficiency of 9.48% with a high Voc of 0.98 V, a Jsc of 14.27 mA cm-2, and an FF of 0.68.

5.
ACS Appl Mater Interfaces ; 9(29): 24797-24803, 2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28660755

RESUMO

A formylated benzodi(cyclopentadithiophene) (BDCPDT) ladder-type structure with forced coplanarity is coupled with two 1,1-dicyanomethylene-3-indanone (IC) moieties via olefination to form a non-fullerene acceptor, BDCPDT-IC. The BDCPDT-IC, as an acceptor (A1) with broad light-absorbing ability and excellent solution processability, is combined with a second PC71BM acceptor (A2) and a medium band gap polymer, PBDB-T, as the donor (D) to form a ternary blend with gradient HOMO/LUMO energy alignments and panchromatic absorption. The device with the inverted architecture using the D:A1:A2 ternary blend has achieved a highest efficiency of 9.79% with a superior Jsc of 16.84 mA cm-2.

6.
Org Lett ; 18(3): 368-71, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26741029

RESUMO

Isomeric 2,8-distannyl 5,11-didodecyl αß-TTN (1, tetrathienonaphthalene = TTN) and 2,8-didodecyl 5,11-distannyl αß-TTN (2) have been designed and successfully synthesized. The naphthalene core structures in αß-TTNs were constructed by a systematic protocol using PtCl2-catalyzed cyclization followed by oxidative Scholl annulation in good yields. Compared to the one-dimensional naphthodithiophene derivatives, the two-dimensional αß-TTN molecules showed good solubility, extended conjugation, strong absorptivity, and highly coplanar structures. Compounds 1 and 2 were polymerized with a 5,5'-dibromo-2,2'-bithiophene-based monomer to afford 2,8-αß-PTTNTT and 5,11-αß-PTTNTT copolymers. 2,8-αß-PTTNTT with the α-aNDT moiety in the main chain exhibited a higher hole mobility of 1.26 × 10(-2) cm(2) V(-1) s(-1).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...