Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(31): e2220500120, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37487105

RESUMO

Regulating the motion of nanoscale objects on a solid surface is vital for a broad range of technologies such as nanotechnology, biotechnology, and mechanotechnology. In spite of impressive advances achieved in the field, there is still a lack of a robust mechanism which can operate under a wide range of situations and in a controllable manner. Here, we report a mechanism capable of controllably driving directed motion of any nanoobjects (e.g., nanoparticles, biomolecules, etc.) in both solid and liquid forms. We show via molecular dynamics simulations that a nanoobject would move preferentially away from the fluctuating region of an underlying substrate, a phenomenon termed fluctuotaxis-for which the driving force originates from the difference in atomic fluctuations of the substrate behind and ahead of the object. In particular, we find that the driving force can depend quadratically on both the amplitude and frequency of the substrate and can thus be tuned flexibly. The proposed driving mechanism provides a robust and controllable way for nanoscale mass delivery and has potential in various applications including nanomotors, molecular machines, etc.

2.
Nanotechnology ; 31(20): 205711, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32018238

RESUMO

The continuous loading assumption is adopted in most present studies on the buckling of thin shells subjected to lateral loads, while the relationship between the finite number of loads and the lateral buckling remains unclear. In this work, we derive an analytic formula for the dependence of the critical buckling stress on the number of loads, which shows that the critical stress increases significantly with the increase of the load number and reaches a saturation value in the limit of large load number. Furthermore, the analytic formula reveals the dependence of the critical stress on the deviation of the radius in an imperfect shell. To verify the validity of the analytic formula, we perform molecular dynamics simulations to investigate the buckling of both perfect and imperfect single-walled carbon nanotubes under a finite number of lateral loads, where the analytic formula agrees with the simulation results. These results shall be valuable for understanding mechanical stability of elastic thin shells or nanoscale tubal structures subjected to discrete lateral loads.

3.
Nanoscale ; 12(9): 5308-5312, 2020 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-31872851

RESUMO

Directing motion of a nanoscale object on solid surfaces, in particular in an intrinsic way, is crucial for many aspects of nanotechnology applications. Here we report a novel intrinsic mechanism for nanoscale directional motion, termed angustotaxis, where a wide single walled carbon nanotube in a tapered channel drives itself toward the narrower end of the channel. The underlying physics of angustotaxis is attributed to the lower system potential when the nanotube is at a narrower region of the channel due to the increased contact area between the nanotube and the channel. Angustotaxis could lead to promising routes not only for nanoscale energy conversion from van der Waals potential to mechanical work, but also for mass transport like surface cleaning.

4.
Nanotechnology ; 31(8): 085702, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31675728

RESUMO

The cross-sectional shape of the nanotube is a key factor governing fundamental mechanical properties of the nanotube and the nanotube forest. In contrast to most circular nanotubes, in the present work, we demonstrate that the holey phenine nanotubes have polygonal cross sections with diameter-dependent number of sides. The non-circular cross section is attributed to the high twistability of the continuous C-C chains in the phenine nanotube. Consequently, the phenine nanotube forest has a square lattice structure rather than the regular hexagonal lattice of the carbon nanotube forest, resulting in a smooth buckling process under biaxial compression. The buckling pattern of the phenine nanotube forest is highly ordered with the orientation determined by the initial dislocation that frequently appears in the phenine nanotube forest.

5.
Nanoscale ; 10(10): 4897-4903, 2018 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-29480296

RESUMO

The conversion of other forms of energy into mechanical work through the geometrical extension and retraction of nanomaterials has a wide variety of potential applications, including for mimicking biomotors. Here, using molecular dynamics simulations, we demonstrate that there exists an intrinsic energy conversion mechanism between thermal energy and mechanical work in the telescopic motions of double-walled carbon nanotubes (DWCNTs). A DWCNT can inherently convert heat into mechanical work in its telescopic extension process, while convert mechanical energy into heat in its telescopic retraction process. These two processes are nearly thermodynamically reversible. The underlying mechanism for this energy conversion is that the configurational entropy changes with the telescopic overlapping length of concentric individual tubes. We also find that the entropy effect enlarges with the decreasing intertube space of DWCNTs. As a result, the spontaneous telescopic motion of a condensed DWCNT can be switched to extrusion by increasing the system temperature above a critical value. These findings are important for fundamentally understanding the mechanical behavior of concentric nanotubes, and may have general implications in the application of DWCNTs as linear motors in nanodevices.

6.
Nanoscale ; 10(4): 1660-1666, 2018 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-29319094

RESUMO

We perform molecular dynamics simulations to investigate the motion of phosphorene nanoflakes on a large graphene substrate under a thermal gradient. It is found that the atomic interaction between the graphene substrate and the phosphorene nanoflake generates distinct rates of motion for phosphorene nanoflakes with different orientations. Remarkably, for square phosphorene nanoflakes, the motion of zigzag-oriented nanoflakes is 2-fold faster than those of armchair-oriented and randomly-oriented nanoflakes. This large diffusion anisotropy suggests that sorting of phosphorene nanoflakes into specific orientations can be realized by a temperature gradient. The findings here provide interesting insights into strong molecular diffusion anisotropy and offer a novel route for manipulating two-dimensional materials.

7.
Nanoscale ; 10(5): 2447-2453, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29336464

RESUMO

Nanoscale friction is generally found to be a function of the contact area. However, little is known whether and how it is dependent on the contact area shape. In this study, based on molecular dynamics (MD) simulations about a rectangular graphene flake sliding on a diamond-supported graphene substrate, we show that the friction between the flake and the substrate is significantly dependent on the flake edge oriented perpendicular to the sliding direction, but less dependent on the edge along the sliding direction. As a result, the friction between the flake and the substrate is closely related to the aspect ratio of the flake. We propose a novel nanoscale friction formula for the translational motion of a rectangular slider. The simulation data fit the formula well and the effect of the aspect ratio on nanoscale friction can thus be efficiently captured. We discuss also the origin of the edge orientation dependent nanoscale friction. The present findings provide not only a preliminary evaluation of the contact area shape dependent nanoscale friction, but also a quite important guide for modeling the friction properties of nanodevices based on two-dimensional (2D) materials.

8.
Sci Rep ; 7(1): 159, 2017 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-28279014

RESUMO

The adhesion of two-dimensional (2D) materials onto other surfaces is usually considered a solid-solid mechanical contact. Here, we conduct both atomistic simulations and theoretical modeling to show that there in fact exists an energy conversion between heat and mechanical work in the attachment/detachment of two-dimensional materials on/off solid surfaces, indicating two-dimensional materials adhesion is a gas-like adsorption rather than a pure solid-solid mechanical adhesion. We reveal that the underlying mechanism of this intriguing gas-like adhesion is the configurational entropy difference between the freestanding and adhered states of the two-dimensional materials. Both the theoretical modeling and atomistic simulations predict that the adhesion induced entropy difference increases with increasing adhesion energy and decreasing equilibrium binding distance. Our findings provide a fundamental understanding of the adhesion of two-dimensional materials, which is important for designing two-dimensional materials based devices and may have general implications for nanoscale efficient actuators.


Assuntos
Adsorção , Fenômenos Biomecânicos , Entropia , Modelos Moleculares , Propriedades de Superfície
9.
Nano Lett ; 16(10): 6396-6402, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27626825

RESUMO

Positive and negative thermophoresis in fluids has found widespread applications from mass transport to molecule manipulation. In solids, although positive thermophoresis has been recently discovered in both theoretical and experimental studies, negative thermophoresis has never been reported. Here we reveal via molecular dynamics simulations that negative thermophoresis does exist in solids. We consider the motion of a single walled carbon nanotube nested inside of two separate outer tubes held at different temperatures. It is found that a sufficiently long inner tube will undergo negative thermophoresis, whereas positive thermophoresis is favorable for a relatively short inner tube. Mechanisms for the observed positive thermophoresis and negative thermophoresis are shown to be totally different. In positive thermophoresis, the driving force comes mainly from the thermally induced edge force and the interlayer attraction force, whereas the driving force for negative thermophoresis is mainly due to the thermal gradient force. These findings have enriched our knowledge of the fundamental driving mechanisms for thermophoresis in solids and may stimulate its further applications in nanotechnology.

10.
Nanoscale ; 8(35): 15948-53, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27536878

RESUMO

We perform molecular dynamics simulations to investigate the effect of hydrogenation on the Poisson's ratio of graphene. It is found that the value of the Poisson's ratio of graphene can be effectively tuned from positive to negative by varying the percentage of hydrogenation. Specifically, the Poisson's ratio decreases with an increase in the percentage of hydrogenation, and reaches a minimum value of -0.04 when the percentage of hydrogenation is about 50%. The Poisson's ratio starts to increase upon a further increase of the percentage of hydrogenation. The appearance of a minimum negative Poisson's ratio in the hydrogenated graphene is attributed to the suppression of the hydrogenation-induced ripples during the stretching of graphene. Our results demonstrate that hydrogenation is a valuable approach for tuning the Poisson's ratio from positive to negative in graphene.

11.
Nano Lett ; 16(8): 5286-90, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27408994

RESUMO

Negative Poisson's ratio (NPR) materials have drawn significant interest because the enhanced toughness, shear resistance, and vibration absorption that typically are seen in auxetic materials may enable a range of novel applications. In this work, we report that single-layer graphene exhibits an intrinsic NPR, which is robust and independent of its size and temperature. The NPR arises due to the interplay between two intrinsic deformation pathways (one with positive Poisson's ratio, the other with NPR), which correspond to the bond stretching and angle bending interactions in graphene. We propose an energy-based deformation pathway criteria, which predicts that the pathway with NPR has lower energy and thus becomes the dominant deformation mode when graphene is stretched by a strain above 6%, resulting in the NPR phenomenon.

12.
Nanoscale ; 8(30): 14406-10, 2016 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-27335206

RESUMO

Motion conversion plays an irreplaceable role in a variety of machinery. Although many macroscopic motion converters have been widely used, it remains a challenge to convert motion at the nanoscale. Here we propose a nanoscale linear-to-linear motion converter, made of a flake-substrate system of graphene, which can convert the out-of-plane motion of the substrate into the in-plane motion of the flake. The curvature gradient induced van der Waals potential gradient between the flake and the substrate provides the driving force to achieve motion conversion. The proposed motion converter may have general implications for the design of nanomachinery and nanosensors.

13.
Phys Rev Lett ; 114(1): 015504, 2015 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-25615480

RESUMO

How to induce nanoscale directional motion via some intrinsic mechanisms pertaining to a nanosystem remains a challenge in nanotechnology. Here we show via molecular dynamics simulations that there exists a fundamental driving force for a nanoscale object to move from a region of lower stiffness toward one of higher stiffness on a substrate. Such nanoscale directional motion is induced by the difference in effective van der Waals potential energy due to the variation in stiffness of the substrate; i.e., all other conditions being equal, a nanoscale object on a stiffer substrate has lower van der Waals potential energy. This fundamental law of nanoscale directional motion could lead to promising routes for nanoscale actuation and energy conversion.

14.
Phys Rev Lett ; 107(10): 105502, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21981509

RESUMO

Molecular dynamics simulations reveal that thermal-induced edge barriers and forces can govern the interlayer interaction of double walled carbon nanotubes. As a result, friction in such systems depends on both the area of contact and the length of the contact edges. The latter effect is negligible in macroscopic friction and provides a feasible explanation for the seemingly contradictory laws of interlayer friction, which have been reported in the literature. The temperature-dependent edge forces can be utilized as a driving force in carbon nanotube thermal actuators, and has general implications for nanoscale friction and contact.

15.
Nano Lett ; 10(9): 3490-3, 2010 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-20681525

RESUMO

We show by molecular dynamics simulations that there exists a reversible domino process in single walled carbon nanotubes (SWCNTs). SWCNTs with one end collapsed and the other circular are chosen for demonstration. At a low temperature, the collapsed zone spreads over the whole tube, while at a higher temperature, the collapsed zone shrinks, and the circular zone extends along the tube. The reason for the reversible domino process is that the temperature modifies the stable state of the tube. The temperature-induced reversible domino process of SWCNTs provides opportunities for the design of nanoscale heat engines, rechargeable expelling devices, temperature-sensitive devices, mechanical oscillators, and pulse generators, etc.

16.
Phys Rev Lett ; 101(17): 175501, 2008 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-18999760

RESUMO

We demonstrate by molecular dynamics simulations that the domino process can be developed in single-walled carbon nanotubes (SWCNTs). Once a section of a SWCNT with an appropriate diameter (>3.5 nm) is collapsed, the successive collapse of the neighboring portions can generate a domino wave along the longitudinal direction of the tube. The wave is driven by van der Waals potential energy and its natural speed can be up to 1 km/s. Molecules inside the SWCNT can be accelerated by the domino wave and finally shot out. The finding shows for the first time that a SWCNT can be an energy supplier, which provides opportunities for designing new concept (domino-driven) nanoelectromechanical system devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...