Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Brain ; 10(1): 42, 2017 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-28865483

RESUMO

Deep brain stimulation in thalamic regions has been proposed as a treatment for epilepsy. The electrical current excites thalamocortical activity which is controlled by γ-aminobutyric acid (GABA)ergic interneurons in the reticular thalamic nucleus (nRT). Previous studies showed that enhancing GABAergic inhibitory strength in the nRT reduces the duration and power of seizures, indicating that the thalamus plays an important role in modulating cortical seizures. The aim of the present study was to apply optogenetics to study the role of the nRT in modulating cortical seizures. We used PV-ChR2-EYFP transgenic mice from Jackson Laboratories, in which only Channelrhodopsin-2 (ChR2) is expressed in parvalbumin-expressing interneurons. Cortical seizure-like activity was induced by electrical stimulation of the corpus callosum after applying 4-aminopyridine. ChR2 expression was abundant in the nRT and cerebellum in PV-ChR2-EYFP transgenic mice. Light stimulation in the nRT caused burst firing in regions of the thalamus and nRT in vitro. Multi-unit activity increased during high-frequency (100 and 50 Hz) light stimulation in the S1 region and thalamus in vivo. Corpus callosum stimulation-induced seizure-like activity was effectively suppressed by high-frequency (100 Hz) and long-duration (10 s) light stimulation. The suppressive effects were reversed by applying a GABAB receptor antagonist but not a GABAA receptor antagonist in the cortex. The results indicated that light stimulation affected thalamocortical relay neurons by activating ChR2-expression neurons in the nRT. High-frequency and long-duration light stimulation was more effective in suppressing cortical seizure-like activity. GABAB receptors may participate in suppressing seizure-like activity.


Assuntos
Córtex Cerebral/patologia , Channelrhodopsins/metabolismo , Cromossomos Artificiais Bacterianos/metabolismo , Optogenética , Parvalbuminas/metabolismo , Estimulação Luminosa , Convulsões/patologia , Tálamo/patologia , Animais , Proteínas de Bactérias/metabolismo , Estimulação Elétrica , Proteínas Luminescentes/metabolismo , Camundongos Transgênicos , Movimento , Reprodutibilidade dos Testes , Ácido gama-Aminobutírico/farmacologia
2.
J Vis Exp ; (112)2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27341682

RESUMO

Cathodal transcranial direct-current stimulation (tDCS) induces suppressive effects on drug-resistant seizures. To perform effective actions, the stimulation parameters (e.g., orientation, field strength, and stimulation duration) need to be examined in mice brain slice preparations. Testing and arranging the orientation of the electrode relative to the position of the mice brain slice are feasible. The present method preserves the thalamocingulate pathway to evaluate the effect of DCS on anterior cingulate cortex seizure-like activities. The results of the multichannel array recordings indicated that cathodal DCS significantly decreased the amplitude of the stimulation-evoked responses and duration of 4-aminopyridine and bicuculline-induced seizure-like activity. This study also found that cathodal DCS applications at 15 min caused long-term depression in the thalamocingulate pathway. The present study investigates the effects of DCS on thalamocingulate synaptic plasticity and acute seizure-like activities. The current procedure can test the optimal stimulation parameters including orientation, field strength, and stimulation duration in an in vitro mouse model. Also, the method can evaluate the effects of DCS on cortical seizure-like activities at both the cellular and network levels.


Assuntos
Eletrodos , Convulsões , Animais , Encéfalo , Estimulação Elétrica , Camundongos , Convulsões/induzido quimicamente , Estimulação Transcraniana por Corrente Contínua
3.
Exp Neurol ; 265: 180-92, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25682917

RESUMO

Clinical studies have shown that cathodal transcranial direct-current stimulation (tDCS) application can produce long-term suppressive effects on drug-resistant seizures. Whether this long-term effect produced by cathodal tDCS can counterbalance the enhancement of synaptic transmission during seizures requires further investigation. Our hypothesis was that the long-term effects of DCS on seizure suppression by the application of cathodal DCS occur through a long-term depression (LTD)-like mechanism. We used a thalamocingulate brain slice preparation combined with a multielectrode array and patch recording to investigate the underlying mechanism of the suppressive effect of DCS on anterior cingulate cortex (ACC) seizures. Patch-clamp recordings showed that cathodal DCS significantly decreased spontaneous excitatory postsynaptic currents (EPSCs) and epileptic EPSCs caused by the 4-aminopyridine. Fifteen minutes of DCS application reliably induced LTD, and the synaptic activation frequency was an important factor in LTD formation. The application of DCS alone without continuous synaptic activation did not induce LTD. Direct-current stimulation-induced LTD appeared to be N-methyl-d-aspartate (NMDA)-dependent, in which the application of the NMDA receptor antagonist D-1-2-amino-5-phosphonopentanoic acid (APV) abolished DCS-induced LTD, and the immediate effect remained. Direct-current stimulation-induced LTD and the long-term effects of DCS on seizure-like activities were also abolished by okadaic acid, a protein phosphatase 1 inhibitor. The long-term effects of DCS on seizures were not influenced by the depotentiation blocker FK-506. Therefore, we conclude that the long-term effects of DCS on seizure-like activities in brain slice occur through an LTD-like mechanism.


Assuntos
4-Aminopiridina/toxicidade , Bicuculina/toxicidade , Modelos Animais de Doenças , Giro do Cíngulo/fisiopatologia , Convulsões/fisiopatologia , Animais , Estimulação Elétrica/métodos , Giro do Cíngulo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos , Convulsões/induzido quimicamente , Convulsões/terapia , Resultado do Tratamento
4.
BMC Neurosci ; 15: 3, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24387299

RESUMO

BACKGROUND: Cortical neurons display network-level dynamics with unique spatiotemporal patterns that construct the backbone of processing information signals and contribute to higher functions. Recent years have seen a wealth of research on the characteristics of neuronal networks that are sufficient conditions to activate or cease network functions. Local field potentials (LFPs) exhibit a scale-free and unique event size distribution (i.e., a neuronal avalanche) that has been proven in the cortex across species, including mice, rats, and humans, and may be used as an index of cortical excitability. In the present study, we induced seizure activity in the anterior cingulate cortex (ACC) with medial thalamic inputs and evaluated the impact of cortical excitability and thalamic inputs on network-level dynamics. We measured LFPs from multi-electrode recordings in mouse cortical slices and isoflurane-anesthetized rats. RESULTS: The ACC activity exhibited a neuronal avalanche with regard to avalanche size distribution, and the slope of the power-law distribution of the neuronal avalanche reflected network excitability in vitro and in vivo. We found that the slope of the neuronal avalanche in seizure-like activity significantly correlated with cortical excitability induced by γ-aminobutyric acid system manipulation. The thalamic inputs desynchronized cingulate seizures and affected the level of cortical excitability, the modulation of which could be determined by the slope of the avalanche size. CONCLUSIONS: We propose that the neuronal avalanche may be a tool for analyzing cortical activity through LFPs to determine alterations in network dynamics.


Assuntos
Potenciais de Ação , Relógios Biológicos , Giro do Cíngulo/fisiopatologia , Rede Nervosa/fisiopatologia , Neurônios , Convulsões/fisiopatologia , Tálamo/fisiopatologia , Animais , Células Cultivadas , Retroalimentação Fisiológica , Camundongos , Camundongos Endogâmicos C57BL , Inibição Neural , Vias Neurais/fisiopatologia
5.
Front Integr Neurosci ; 7: 104, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24427123

RESUMO

Epilepsy is a common neurological disorder, about 1% population worldwide suffered from this disease. In 1989, the International League Against Epilepsy (ILAE) classified anterior cingulate epilepsy as a form of frontal lobe epilepsy (FLE). FLE is the second most common type of epilepsy. Previous clinical studies showed that FLE account an important cause in refractory epilepsy, therefore to find alternative approach to modulate FLE is very important. Basic research using animal models and brain slice have revealed some insights on the epileptogenesis and modulation of seizure in anterior cingulate cortex (ACC). Interneurons play an important role in the synchronization of cingulate epilepsy. Research has shown that the epileptogenesis of seizure originated from mesial frontal lobe might be caused by a selective increase in nicotine-evoked γ-aminobutyric acid (GABA) inhibition, because the application of the GABAA receptor antagonist picrotoxin inhibited epileptic discharges. Gap junctions are also involved in the regulation of cingulate epilepsy. Previous studies have shown that the application of gap junction blockers could attenuate ACC seizures, while gap junction opener could enhance them in an in vitro preparation. µ-Opioid receptors have been shown to be involved in the epileptic synchronization mechanism in ACC seizures in a brain slice preparation. Application of the µ-opioid agonist DAMGO significantly abolished the ictal discharges in a 4-aminopyridine induced electrographic seizure model in ACC. Basic research has also found that thalamic modulation has an inhibitory effect on ACC seizures. Studies have shown that the medial thalamus may be a target for deep brain stimulation to cure ACC seizures.

6.
PLoS One ; 8(5): e62952, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23690968

RESUMO

The thalamus is an important target for deep brain stimulation in the treatment of seizures. However, whether the modulatory effect of thalamic inputs on cortical seizures occurs through the modulation of gap junctions has not been previously studied. Therefore, we tested the effects of different gap junction blockers and couplers in a drug-resistant seizure model and studied the role of gap junctions in the thalamic modulation on cortical seizures. Multielectrode array and calcium imaging were used to record the cortical seizures induced by 4-aminopyridine (250 µM) and bicuculline (5-50 µM) in a novel thalamocingulate slice preparation. Seizure-like activity was significantly attenuated by the pan-gap junction blockers carbenoxolone and octanol and specific neuronal gap junction blocker mefloquine. The gap junction coupler trimethylamine significantly enhanced seizure-like activity. Gap junction blockers did not influence the initial phase of seizure-like activity, but they significantly decreased the amplitude and duration of the maintenance phase. The development of seizures is regulated by extracellular potassium concentration. Carbenoxolone partially restored the amplitude and duration after removing the thalamic inputs. A two-dimensional current source density analysis showed that the sink and source signals shifted to deeper layers after removing the thalamic inputs during the clonic phase. These results indicate that the regulatory mechanism of deep brain stimulation in the thalamus occurs partially though gap junctions.


Assuntos
Epilepsia do Lobo Frontal/patologia , Epilepsia do Lobo Frontal/fisiopatologia , Junções Comunicantes/metabolismo , Giro do Cíngulo/patologia , Giro do Cíngulo/fisiopatologia , Tálamo/fisiologia , Animais , Carbenoxolona/farmacologia , Resistência a Medicamentos , Junções Comunicantes/efeitos dos fármacos , Giro do Cíngulo/efeitos dos fármacos , Mefloquina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Octanóis/farmacologia , Análise Espaço-Temporal , Tálamo/efeitos dos fármacos , Ritmo Teta/efeitos dos fármacos
7.
J Biomed Sci ; 19: 55, 2012 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-22646813

RESUMO

BACKGROUND: N-ethyl-N-nitrosourea mutagenesis was used to induce a point mutation in C57BL/6 J mice. Pain-related phenotype screening was performed in 915 G3 mice. We report the detection of a heritable recessive mutant in meiotic recombinant N1F1 mice that caused an abnormal pain sensitivity phenotype with spontaneous skin inflammation in the paws and ears. METHODS: We investigated abnormal sensory processing, neuronal peptides, and behavioral responses after the induction of autoinflammatory disease. Single-nucleotide polymorphism (SNP) markers and polymerase chain reaction product sequencing were used to identify the mutation site. RESULTS: All affected mice developed paw inflammation at 4-8 weeks. Histological examinations revealed hyperplasia of the epidermis in the inflamed paws and increased macrophage expression in the spleen and paw tissues. Mechanical and thermal nociceptive response thresholds were reduced in the affected mice. Locomotor activity was decreased in affected mice with inflamed hindpaws, and this reduction was attributable to the avoidance of contact of the affected paw with the floor. Motor strength and daily activity in the home cage in the affected mice did not show any significant changes. Although Fos immunoreactivity was normal in the dorsal horn of affected mice, calcitonin gene-related peptide immunoreactivity significantly increased in the deep layer of the dorsal horn. The number of microglia increased in the spinal cord, hippocampus, and cerebral cortex in affected mice, and the proliferation of microglia was maintained for a couple of months. Two hundred eighty-five SNP markers were used to reveal the affected gene locus, which was found on the distal part of chromosome 18. A point mutation was detected at A to G in exon 8 of the pstpip2 gene, resulting in a conserved tyrosine residue at amino acid 180 replaced by cysteine (Y180 C). CONCLUSIONS: The data provide definitive evidence that a mutation in pstpip2 causes autoinflammatory disease in an N-ethyl-N-nitrosourea mutagenesis mouse model. Thus, our pstpip2 mutant mice provide a new model for investigating the potential mechanisms of inflammatory pain.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas do Citoesqueleto/genética , Mutagênese , Mutação/genética , Dor/genética , Animais , Modelos Animais de Doenças , Etilnitrosoureia/toxicidade , Inflamação/genética , Camundongos , Camundongos Endogâmicos C57BL , Polimorfismo de Nucleotídeo Único
8.
Epilepsia ; 52(12): 2344-55, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22092196

RESUMO

PURPOSE: Seizure-like activities generated in anterior cingulate cortex (ACC) are usually classified as simple partial and are associated with changes in autonomic function, motivation, and thought. Previous studies have shown that thalamic inputs can modulate ACC seizure, but the exact mechanisms have not been studied thoroughly. Therefore, we investigated the role of thalamic inputs in modulating ACC seizure-like activities. In addition, seizure onset and propagation are difficult to determine in vivo in ACC. We studied the spatiotemporal changes in epileptiform activity in this cortex in a thalamic-ACC slice to clearly determine seizure onset. METHODS: We used multielectrode array (MEA) recording and calcium imaging to investigate the modulatory effect of thalamic inputs in a thalamic-ACC slice preparation. KEY FINDINGS: Seizure-like activities induced with 4-aminopyridine (4-AP; 250 µm) and bicuculline (5-50 µm) in ACC were attenuated by glutamate receptor antagonists, and the degree of disinhibition varied with the dose of bicuculline. Seizure-like activities were decreased with 1 Hz thalamic stimulation, whereas corpus callosum stimulation could increase ictal discharges. Amplitude and duration of cingulate seizure-like activities were augmented after removing thalamic inputs, and this effect was not observed with those induced with elevated bicuculline (50 µm). Seizure-like activities were initiated in layers II/III and, after thalamic lesions, they occurred mainly in layers V/VI. Two-dimensional current-source density analyses revealed sink signals more frequently in layers V/VI after thalamic lesions, indicating that these layers produce larger excitatory synchronization. Calcium transients were synchronized after thalamic lesions suggesting that ACC seizure-like activities are subjected to desynchronizing modulation by thalamic inputs. Therefore, ACC seizure-like activities are subject to desynchronizing modulation from medial thalamic inputs to deep layer pyramidal neurons. SIGNIFICANCE: Cingulate seizure-like activities were modulated significantly by thalamic inputs. Repeated stimulation of the thalamus efficiently inhibited epileptiform activity, demonstrating that the desynchronization was pathway-specific. The clinical implications of deep thalamic stimulation in the modulation of cingulate epileptic activity require further investigation.


Assuntos
Giro do Cíngulo/fisiopatologia , Convulsões/patologia , Tálamo/fisiologia , 4-Aminopiridina/toxicidade , 6-Ciano-7-nitroquinoxalina-2,3-diona/farmacologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Bicuculina/toxicidade , Relógios Biológicos/efeitos dos fármacos , Cálcio/metabolismo , Corpo Caloso/fisiologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Estimulação Elétrica/métodos , Eletrodos , Giro do Cíngulo/efeitos dos fármacos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Muscimol/farmacologia , Vias Neurais/fisiologia , Convulsões/induzido quimicamente , Convulsões/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...