Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Anal Chim Acta ; 1303: 342537, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38609272

RESUMO

BACKGROUND: Antibody‒drug conjugates (ADCs) are innovative biopharmaceutics consisting of a monoclonal antibody, linkers, and cytotoxic payloads. Monitoring circulating payload concentrations has the potential to identify ADC toxicity; however, accurate quantification faces challenges, including low plasma concentrations, severe matrix effects, and the absence of stable isotope-labeled internal standards (SIL-IS) for payloads and their derivatives. Previous studies used structural analogs as internal standards, but different retention times between structural analogs and target analytes may hinder effective matrix correction. Therefore, a more flexible approach is required for precise payload quantification. RESULTS: We developed an LC‒MS/MS method incorporating a postcolumn-infused internal standard (PCI-IS) strategy for quantifying payloads and their derivatives of trastuzumab emtansine, trastuzumab deruxtecan, and sacituzumab govitecan, including DM1, MCC-DM1, DXd, SN-38, and SN-38G. Structural analogs (maytansine, Lys-MCC-DM1, and exatecan) were selected as PCI-IS candidates, and their accuracy performance was evaluated based on the percentage of samples within 80%-120% quantification accuracy. Compared to the approach without PCI-IS correction, exatecan enhanced the accuracy performance from 30-40%-100% for SN-38 and DXd, while maytansine and Lys-MCC-DM1 showed comparable accuracy for DM1 and MCC-DM1. This validated PCI-IS analytical method showed superior normalization of matrix effect in all analytes compared to the conventional internal standard approach. The clinical application of this approach showed pronounced differences in DXd and SN-38 concentrations before and after PCI-IS correction. Moreover, only DXd concentrations after PCI-IS correction were significantly higher in patients with thrombocytopenia (p = 0.037). SIGNIFICANCE: This approach effectively addressed the issue of unavailability of SIL-IS for novel ADC payloads and provided more accurate quantification, potentially yielding more robust statistical outcomes for understanding the exposure-toxicity relationship in ADCs. It is anticipated that this PCI-IS strategy may be extrapolated to quantify payloads and derivatives in diverse ADCs, thereby providing invaluable insights into drug toxicity and fortifying patient safety in ADC usage.


Assuntos
Imunoconjugados , Maitansina , Intervenção Coronária Percutânea , Humanos , Irinotecano , Cromatografia Líquida , Espectrometria de Massa com Cromatografia Líquida , Espectrometria de Massas em Tandem , Maitansina/uso terapêutico
2.
Front Plant Sci ; 15: 1310346, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444537

RESUMO

Wolfberry, also known as goji berry or Lycium barbarum, is a highly valued fruit with significant health benefits and nutritional value. For more efficient and comprehensive usage of published L. barbarum genomic data, we established the Wolfberry database. The utility of the Wolfberry Genome Database (WGDB) is highlighted through the Genome browser, which enables the user to explore the L. barbarum genome, browse specific chromosomes, and access gene sequences. Gene annotation features provide comprehensive information about gene functions, locations, expression profiles, pathway involvement, protein domains, and regulatory transcription factors. The transcriptome feature allows the user to explore gene expression patterns using transcripts per kilobase million (TPM) and fragments per kilobase per million mapped reads (FPKM) metrics. The Metabolism pathway page provides insights into metabolic pathways and the involvement of the selected genes. In addition to the database content, we also introduce six analysis tools developed for the WGDB. These tools offer functionalities for gene function prediction, nucleotide and amino acid BLAST analysis, protein domain analysis, GO annotation, and gene expression pattern analysis. The WGDB is freely accessible at https://cosbi7.ee.ncku.edu.tw/Wolfberry/. Overall, WGDB serves as a valuable resource for researchers interested in the genomics and transcriptomics of L. barbarum. Its user-friendly web interface and comprehensive data facilitate the exploration of gene functions, regulatory mechanisms, and metabolic pathways, ultimately contributing to a deeper understanding of wolfberry and its potential applications in agronomy and nutrition.

3.
Nucleic Acids Res ; 52(D1): D1569-D1578, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37897338

RESUMO

PlantPAN 4.0 (http://PlantPAN.itps.ncku.edu.tw/) is an integrative resource for constructing transcriptional regulatory networks for diverse plant species. In this release, the gene annotation and promoter sequences were expanded to cover 115 species. PlantPAN 4.0 can help users characterize the evolutionary differences and similarities among cis-regulatory elements; furthermore, this system can now help in identification of conserved non-coding sequences among homologous genes. The updated transcription factor binding site repository contains 3428 nonredundant matrices for 18305 transcription factors; this expansion helps in exploration of combinational and nucleotide variants of cis-regulatory elements in conserved non-coding sequences. Additionally, the genomic landscapes of regulatory factors were manually updated, and ChIP-seq data sets derived from a single-cell green alga (Chlamydomonas reinhardtii) were added. Furthermore, the statistical review and graphical analysis components were improved to offer intelligible information through ChIP-seq data analysis. These improvements included easy-to-read experimental condition clusters, searchable gene-centered interfaces for the identification of promoter regions' binding preferences by considering experimental condition clusters and peak visualization for all regulatory factors, and the 20 most significantly enriched gene ontology functions for regulatory factors. Thus, PlantPAN 4.0 can effectively reconstruct gene regulatory networks and help compare genomic cis-regulatory elements across plant species and experiments.


Assuntos
Bases de Dados Genéticas , Regulação da Expressão Gênica de Plantas , Plantas , Regiões Promotoras Genéticas , Redes Reguladoras de Genes , Plantas/genética , Ligação Proteica
4.
ACS Appl Mater Interfaces ; 15(28): 33373-33381, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37395349

RESUMO

The current standard of care for colon cancer surveillance relies heavily on white light endoscopy (WLE). However, dysplastic lesions that are not visible to the naked eye are often missed when conventional WLE equipment is used. Although dye-based chromoendoscopy shows promise, current dyes cannot delineate tumor tissues from surrounding healthy tissues accurately. The goal of the present study was to screen various phthalocyanine (PC) dye-loaded micelles for their ability to improve the direct visualization of tumor tissues under white light following intravenous administration. Zinc PC (tetra-tert-butyl)-loaded micelles were identified as the optimal formulation. Their accumulation within syngeneic breast tumors led the tumors to turn dark blue in color, making them clearly visible to the naked eye. These micelles were similarly able to turn spontaneous colorectal adenomas in Apc+/Min mice a dark blue color for easy identification and could enable clinicians to more effectively detect and remove colonic polyps.


Assuntos
Neoplasias , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Luz , Corantes/química , Micelas , Masculino , Animais , Camundongos , Humanos , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral
5.
J Exp Bot ; 74(17): 4949-4958, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37523674

RESUMO

Long noncoding RNAs (lncRNAs) are regulatory RNAs involved in numerous biological processes. Many plant lncRNAs have been identified, but their regulatory mechanisms remain largely unknown. A resource that enables the investigation of lncRNA activity under various conditions is required because the co-expression between lncRNAs and protein-coding genes may reveal the effects of lncRNAs. This study developed JustRNA, an expression profiling resource for plant lncRNAs. The platform currently contains 1 088 565 lncRNA annotations for 80 plant species. In addition, it includes 3692 RNA-seq samples derived from 825 conditions in six model plants. Functional network reconstruction provides insight into the regulatory roles of lncRNAs. Genomic association analysis and microRNA target prediction can be employed to depict potential interactions with nearby genes and microRNAs, respectively. Subsequent co-expression analysis can be employed to strengthen confidence in the interactions among genes. Chromatin immunoprecipitation sequencing data of transcription factors and histone modifications were integrated into the JustRNA platform to identify the transcriptional regulation of lncRNAs in several plant species. The JustRNA platform provides researchers with valuable insight into the regulatory mechanisms of plant lncRNAs. JustRNA is a free platform that can be accessed at http://JustRNA.itps.ncku.edu.tw.


Assuntos
MicroRNAs , RNA Longo não Codificante , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação da Expressão Gênica , Fatores de Transcrição/metabolismo , Perfilação da Expressão Gênica , RNA de Plantas/genética
6.
Cancers (Basel) ; 15(11)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37296911

RESUMO

PURPOSE: The purpose of this study was to assess the effect of folic acid (FA) supplementation on colitis-associated colorectal cancer (CRC) using the azoxymethane/dextran sulfate sodium (AOM/DSS) model. METHODS: Mice were fed a chow containing 2 mg/kg FA at baseline and randomized after the first DSS treatment to receive 0, 2, or 8 mg/kg FA chow for 16 weeks. Colon tissue was collected for histopathological evaluation, genome-wide methylation analyses (Digital Restriction Enzyme Assay of Methylation), and gene expression profiling (RNA-Seq). RESULTS: A dose-dependent increase in the multiplicity of colonic dysplasias was observed, with the multiplicity of total and polypoid dysplasias higher (64% and 225%, respectively) in the 8 mg FA vs. the 0 mg FA group (p < 0.001). Polypoid dysplasias were hypomethylated, as compared to the non-neoplastic colonic mucosa (p < 0.05), irrespective of FA treatment. The colonic mucosa of the 8 mg FA group was markedly hypomethylated as compared to the 0 mg FA group. Differential methylation of genes involved in Wnt/ß-catenin and MAPK signaling resulted in corresponding alterations in gene expression within the colonic mucosa. CONCLUSIONS: High-dose FA created an altered epigenetic field effect within the non-neoplastic colonic mucosa. The observed decrease in site-specific DNA methylation altered oncogenic pathways and promoted colitis-associated CRC.

7.
Comput Struct Biotechnol J ; 21: 2147-2159, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37013004

RESUMO

In eukaryotes, dynamic regulation enables DNA polymerases to catalyze a variety of RNA products in spatial and temporal patterns. Dynamic gene expression is regulated by transcription factors (TFs) and epigenetics (DNA methylation and histone modification). The applications of biochemical technology and high-throughput sequencing enhance the understanding of mechanisms of these regulations and affected genomic regions. To provide a searchable platform for retrieving such metadata, numerous databases have been developed based on the integration of genome-wide maps (e.g., ChIP-seq, whole-genome bisulfite sequencing, RNA-seq, ATAC-seq, DNase-seq, and MNase-seq data) and functionally genomic annotation. In this mini review, we summarize the main functions of TF-related databases and outline the prevalent approaches used in inferring epigenetic regulations, their associated genes, and functions. We review the literature on crosstalk between TF and epigenetic regulation and the properties of non-coding RNA regulation, which are challenging topics that promise to pave the way for advances in database development.

8.
Gastroenterology ; 164(6): 921-936.e1, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36764492

RESUMO

BACKGROUND & AIMS: Aberrant DNA methylation is frequent in colorectal cancer (CRC), but underlying mechanisms and pathologic consequences are poorly understood. METHODS: We disrupted active DNA demethylation genes Tet1 and/or Tdg from ApcMin mice and characterized the methylome and transcriptome of colonic adenomas. Data were compared to human colonic adenocarcinomas (COAD) in The Cancer Genome Atlas. RESULTS: There were increased numbers of small intestinal adenomas in ApcMin mice expressing the TdgN151A allele, whereas Tet1-deficient and Tet1/TdgN151A-double heterozygous ApcMin colonic adenomas were larger with features of erosion and invasion. We detected reduction in global DNA hypomethylation in colonic adenomas from Tet1- and Tdg-mutant ApcMin mice and hypermethylation of CpG islands in Tet1-mutant ApcMin adenomas. Up-regulation of inflammatory, immune, and interferon response genes was present in Tet1- and Tdg-mutant colonic adenomas compared to control ApcMin adenomas. This up-regulation was also seen in murine colonic organoids and human CRC lines infected with lentiviruses expressing TET1 or TDG short hairpin RNA. A 127-gene inflammatory signature separated colonic adenocarcinomas into 4 groups, closely aligned with their microsatellite or chromosomal instability and characterized by different levels of DNA methylation and DNMT1 expression that anticorrelated with TET1 expression. Tumors with the CpG island methylator phenotype (CIMP) had concerted high DNMT1/low TET1 expression. TET1 or TDG knockdown in CRC lines enhanced killing by natural killer cells. CONCLUSIONS: Our findings reveal a novel epigenetic regulation, linked to the type of genomic instability, by which TET1/TDG-mediated DNA demethylation decreases methylation levels and inflammatory/interferon/immune responses. CIMP in CRC is triggered by an imbalance of methylating activities over demethylating activities. These mice represent a model of CIMP CRC.


Assuntos
Adenocarcinoma , Adenoma , Neoplasias do Colo , Neoplasias Colorretais , Animais , Humanos , Camundongos , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenoma/genética , Adenoma/patologia , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Neoplasias do Colo/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Ilhas de CpG/genética , Metilação de DNA , Proteínas de Ligação a DNA/genética , Epigênese Genética , Oxigenases de Função Mista/genética , Fenótipo , Proteínas Proto-Oncogênicas/genética
9.
Methods Mol Biol ; 2594: 173-183, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36264496

RESUMO

Reconstruction of gene regulatory networks is a very important but difficult issue in plant sciences. Recently, numerous high-throughput techniques, such as chromatin immunoprecipitation sequencing (ChIP-seq) and DNA affinity purification sequencing (DAP-seq), have been developed to identify the genomic binding landscapes of regulatory factors. To understand the relationships among transcription factors (TFs) and their corresponding binding sites on target genes is usually the first step for elucidating gene regulatory mechanisms. Therefore, a good database for plant TFs and transcription factor binding sites (TFBSs) will be useful for starting a series of complex experiments. In this chapter, PlantPAN (version 3.0) is utilized as an example to explain how bioinformatics systems advance research on gene regulation.


Assuntos
Plantas , Fatores de Transcrição , Sítios de Ligação , Ligação Proteica , Plantas/genética , Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , DNA/metabolismo
10.
Viruses ; 14(11)2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36366541

RESUMO

Swine influenza virus (SIV) circulates worldwide, posing substantial economic loss and disease burden to humans and animals. Vaccination remains the most effective way to prevent SIV infection and transmission. In this study, we evaluated the protective efficacy of a recombinant, baculovirus-insect cell system-expressed bivalent nanoparticle SIV vaccine in mice challenged with drifted swine influenza H1N1 and H3N2 viruses. After a prime-boost immunization, the bivalent nanoparticle vaccine (BNV) induced high levels of hemagglutination inhibition (HAI) antibodies, virus-neutralization (VN) antibodies, and antigen-specific IgG antibodies in mice, as well as more efficient cytokine levels. The MF59 and CPG1 adjuvant could significantly promote both humoral and cellular immunity of BNV. The MF59 adjuvant showed a balanced Th1/Th2 immune response, and the CPG1 adjuvant tended to show a Th1-favored response. The BALB/c challenge test showed that BNV could significantly reduce lung viral loads and feces viral shedding, and showed fewer lung pathological lesions than those in PBS and inactivated vaccine groups. These results suggest that this novel bivalent nanoparticle swine influenza vaccine can be used as an efficacious vaccine candidate to induce robust immunity and provide broad protection against drifted subtypes in mice. Immune efficacy in pigs needs to be further evaluated.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Nanopartículas , Infecções por Orthomyxoviridae , Doenças dos Suínos , Humanos , Suínos , Camundongos , Animais , Vírus da Influenza A Subtipo H3N2 , Vacinas Combinadas , Anticorpos Antivirais , Adjuvantes Imunológicos
11.
Biomedicines ; 10(11)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36359244

RESUMO

We studied the phenotypes in an oligodendrocyte genesis site at the acute stage of spinal cord injury, when we observed regenerated ascending neurites. Pan-oligodendrocyte marker OLIG2+ cells were more in fibroblast growth factor (FGF)-1-treated rats (F group) than in non-treated (T group) in this site, while the number of NG2+OX42- oligodendrocyte progenitor cell (OPC), CNPase+ OPC, Nkx2.2+ OPC, and APC+ remyelinating oligodendrocytes was less in the F group. Paradoxically, when we label the rats with pulsed bromodeoxyuridine (BrdU), we found that the mitotic NKX2.2+ OPC cells are more in the F group than in the T group. We tested the embryonic spinal cord mixed culture. FGF treatment resulted in more NG2(+) CNPase (+) than non-FGF-1-treated culture, while the more mature NG2(-) CNPase(+) cell numbers were reduced. When we block the FGF receptor in the injured rat model, the NG2+OX42- cell numbers were increased to be comparable to non-FGF-1 rats, while this failed to bring back the APC+ mature oligodendrocyte cell numbers. As migration of OPC toward injury is a major factor that was absent from the cell culture, we tested 8 mm away from the injury center, and found there were more NG2+ cells with FGF-1 treatment. We proposed that it was possibly a combination of migration and proliferation that resulted in a reduction in the NG2+ OPC population at the oligodendrocyte genesis site when FGF-1 was added to the spinal cord injury in vivo.

12.
Comput Struct Biotechnol J ; 20: 4910-4920, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147678

RESUMO

Cis-regulatory elements of promoters are essential for gene regulation by transcription factors (TFs). However, the regulatory roles of nonpromoter regions, TFs, and epigenetic marks remain poorly understood in plants. In this study, we characterized the cis-regulatory regions of 53 TFs and 19 histone marks in 328 chromatin immunoprecipitation (ChIP-seq) datasets from Arabidopsis. The genome-wide maps indicated that both promoters and regions around the transcription termination sites of protein-coding genes recruit the most TFs. The maps also revealed a diverse of histone combinations. The analysis suggested that exons play critical roles in the regulation of non-coding genes. Additionally, comparative analysis between heat-stress-responsive and nonresponsive genes indicated that the genes with distinct functions also exhibited substantial differences in cis-regulatory regions, histone regulation, and topologically associating domain (TAD) boundary organization. By integrating multiple high-throughput sequencing datasets, this study generated regulatory models for protein-coding genes, non-coding genes, and TAD boundaries to explain the complexity of transcriptional regulation.

13.
Nucleic Acids Res ; 50(D1): D471-D479, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34788852

RESUMO

Protein post-translational modifications (PTMs) play an important role in different cellular processes. In view of the importance of PTMs in cellular functions and the massive data accumulated by the rapid development of mass spectrometry (MS)-based proteomics, this paper presents an update of dbPTM with over 2 777 000 PTM substrate sites obtained from existing databases and manual curation of literature, of which more than 2 235 000 entries are experimentally verified. This update has manually curated over 42 new modification types that were not included in the previous version. Due to the increasing number of studies on the mechanism of PTMs in the past few years, a great deal of upstream regulatory proteins of PTM substrate sites have been revealed. The updated dbPTM thus collates regulatory information from databases and literature, and merges them into a protein-protein interaction network. To enhance the understanding of the association between PTMs and molecular functions/cellular processes, the functional annotations of PTMs are curated and integrated into the database. In addition, the existing PTM-related resources, including annotation databases and prediction tools are also renewed. Overall, in this update, we would like to provide users with the most abundant data and comprehensive annotations on PTMs of proteins. The updated dbPTM is now freely accessible at https://awi.cuhk.edu.cn/dbPTM/.


Assuntos
Bases de Dados de Proteínas , Redes Reguladoras de Genes , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo , Software , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Bactérias/genética , Bactérias/metabolismo , Humanos , Internet , Camundongos , Modelos Moleculares , Anotação de Sequência Molecular , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas , Proteínas/química , Proteínas/genética , Ratos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
14.
Cancer Prev Res (Phila) ; 14(11): 995-1008, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34584001

RESUMO

Previous studies have reported that phosphodiesterase 10A (PDE10) is overexpressed in colon epithelium during early stages of colon tumorigenesis and essential for colon cancer cell growth. Here we describe a novel non-COX inhibitory derivative of the anti-inflammatory drug, sulindac, with selective PDE10 inhibitory activity, ADT 061. ADT 061 potently inhibited the growth of colon cancer cells expressing high levels of PDE10, but not normal colonocytes that do not express PDE10. The concentration range by which ADT 061 inhibited colon cancer cell growth was identical to concentrations that inhibit recombinant PDE10. ADT 061 inhibited PDE10 by a competitive mechanism and did not affect the activity of other PDE isozymes at concentrations that inhibit colon cancer cell growth. Treatment of colon cancer cells with ADT 061 activated cGMP/PKG signaling, induced phosphorylation of oncogenic ß-catenin, inhibited Wnt-induced nuclear translocation of ß-catenin, and suppressed TCF/LEF transcription at concentrations that inhibit cancer cell growth. Oral administration of ADT 061 resulted in high concentrations in the colon mucosa and significantly suppressed the formation of colon adenomas in the Apc+/min-FCCC mouse model of colorectal cancer without discernable toxicity. These results support the development of ADT 061 for the treatment or prevention of adenomas in individuals at risk of developing colorectal cancer. PREVENTION RELEVANCE: PDE10 is overexpressed in colon tumors whereby inhibition activates cGMP/PKG signaling and suppresses Wnt/ß-catenin transcription to selectively induce apoptosis of colon cancer cells. ADT 061 is a novel PDE10 inhibitor that shows promising cancer chemopreventive activity and tolerance in a mouse model of colon cancer.


Assuntos
Neoplasias do Colo , beta Catenina , Animais , Carcinogênese , Colo/patologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Neoplasias do Colo/prevenção & controle , Camundongos , Inibidores de Fosfodiesterase/farmacologia , Sulindaco/farmacologia
15.
Viruses ; 13(8)2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34452417

RESUMO

Synergistic interactions among viruses, hosts and/or transmission vectors during mixed infection can alter viral titers, symptom severity or host range. Viral suppressors of RNA silencing (VSRs) are considered one of such factors contributing to synergistic responses. Odontoglossum ringspot virus (ORSV) and cymbidium mosaic virus (CymMV), which are two of the most significant orchid viruses, exhibit synergistic symptom intensification in Phalaenopsis orchids with unilaterally enhanced CymMV movement by ORSV. In order to reveal the underlying mechanisms, we generated infectious cDNA clones of ORSV and CymMV isolated from Phalaenopsis that exerted similar unilateral synergism in both Phalaenopsis orchid and Nicotiana benthamiana. Moreover, we show that the ORSV replicase P126 is a VSR. Mutagenesis analysis revealed that mutation of the methionine in the carboxyl terminus of ORSV P126 abolished ORSV replication even though some P126 mutants preserved VSR activity, indicating that the VSR function of P126 alone is not sufficient for viral replication. Thus, P126 functions in both ORSV replication and as a VSR. Furthermore, P126 expression enhanced cell-to-cell movement and viral titers of CymMV in infected Phalaenopsis flowers and N. benthamiana leaves. Taking together, both the VSR and protein function of P126 might be prerequisites for unilaterally enhancing CymMV cell-to-cell movement by ORSV.


Assuntos
Coinfecção/virologia , Orchidaceae/virologia , Células Vegetais/virologia , Potexvirus/metabolismo , Tobamovirus/metabolismo , Proteínas do Capsídeo/genética , Sinergismo Farmacológico , Interações Microbianas , Potexvirus/genética , Interferência de RNA , RNA Viral/genética , Nicotiana/virologia , Tobamovirus/genética , Replicação Viral
17.
Plant Cell Physiol ; 61(10): 1818-1827, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32898258

RESUMO

Co-expressed genes tend to have regulatory relationships and participate in similar biological processes. Construction of gene correlation networks from microarray or RNA-seq expression data has been widely applied to study transcriptional regulatory mechanisms and metabolic pathways under specific conditions. Furthermore, since transcription factors (TFs) are critical regulators of gene expression, it is worth investigating TFs on the promoters of co-expressed genes. Although co-expressed genes and their related metabolic pathways can be easily identified from previous resources, such as EXPath and EXPath Tool, this information is not simultaneously available to identify their regulatory TFs. EXPath 2.0 is an updated database for the investigation of regulatory mechanisms in various plant metabolic pathways with 1,881 microarray and 978 RNA-seq samples. There are six significant improvements in EXPath 2.0: (i) the number of species has been extended from three to six to include Arabidopsis, rice, maize, Medicago, soybean and tomato; (ii) gene expression at various developmental stages have been added; (iii) construction of correlation networks according to a group of genes is available; (iv) hierarchical figures of the enriched Gene Ontology (GO) terms are accessible; (v) promoter analysis of genes in a metabolic pathway or correlation network is provided; and (vi) user's gene expression data can be uploaded and analyzed. Thus, EXPath 2.0 is an updated platform for investigating gene expression profiles and metabolic pathways under specific conditions. It facilitates users to access the regulatory mechanisms of plant biological processes. The new version is available at http://EXPath.itps.ncku.edu.tw.


Assuntos
Bases de Dados Genéticas , Regulação da Expressão Gênica de Plantas , Expressão Gênica , Arabidopsis/genética , Arabidopsis/metabolismo , Genes de Plantas , Ensaios de Triagem em Larga Escala , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Medicago/genética , Medicago/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Oryza/genética , Oryza/metabolismo , Glycine max/genética , Glycine max/metabolismo , Fatores de Transcrição/genética , Zea mays/genética , Zea mays/metabolismo
18.
Genomics Proteomics Bioinformatics ; 18(2): 208-219, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32592791

RESUMO

Protein succinylation is a biochemical reaction in which a succinyl group (-CO-CH2-CH2-CO-) is attached to the lysine residue of a protein molecule. Lysine succinylation plays important regulatory roles in living cells. However, studies in this field are limited by the difficulty in experimentally identifying the substrate site specificity of lysine succinylation. To facilitate this process, several tools have been proposed for the computational identification of succinylated lysine sites. In this study, we developed an approach to investigate the substrate specificity of lysine succinylated sites based on amino acid composition. Using experimentally verified lysine succinylated sites collected from public resources, the significant differences in position-specific amino acid composition between succinylated and non-succinylated sites were represented using the Two Sample Logo program. These findings enabled the adoption of an effective machine learning method, support vector machine, to train a predictive model with not only the amino acid composition, but also the composition of k-spaced amino acid pairs. After the selection of the best model using a ten-fold cross-validation approach, the selected model significantly outperformed existing tools based on an independent dataset manually extracted from published research articles. Finally, the selected model was used to develop a web-based tool, SuccSite, to aid the study of protein succinylation. Two proteins were used as case studies on the website to demonstrate the effective prediction of succinylation sites. We will regularly update SuccSite by integrating more experimental datasets. SuccSite is freely accessible at http://csb.cse.yzu.edu.tw/SuccSite/.


Assuntos
Aminoácidos/metabolismo , Ácido Succínico/metabolismo , Sequência de Aminoácidos , Bases de Dados de Proteínas , Dipeptídeos/metabolismo , Humanos , Lisina/metabolismo , Aprendizado de Máquina , Proteínas/química , Proteínas/metabolismo , Curva ROC , Especificidade por Substrato , Máquina de Vetores de Suporte
19.
Plant Cell Physiol ; 61(6): 1204-1212, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32181856

RESUMO

Small RNA (sRNA), such as microRNA (miRNA) and short interfering RNA, are well-known to control gene expression based on degradation of target mRNA in plants. A considerable amount of research has applied next-generation sequencing (NGS) to reveal the regulatory pathways of plant sRNAs. Consequently, numerous bioinformatics tools have been developed for the purpose of analyzing sRNA NGS data. However, most methods focus on the study of sRNA expression profiles or novel miRNAs predictions. The analysis of sRNA target genes is usually not integrated into their pipelines. As a result, there is still no means available for identifying the interaction mechanisms between host and virus or the synergistic effects between two viruses. For the present study, a comprehensive system, called the Small RNA Illustration System (sRIS), has been developed. This system contains two main components. The first is for sRNA overview analysis and can be used not only to identify miRNA but also to investigate virus-derived small interfering RNA. The second component is for sRNA target prediction, and it employs both bioinformatics calculations and degradome sequencing data to enhance the accuracy of target prediction. In addition, this system has been designed so that figures and tables for the outputs of each analysis can be easily retrieved and accessed, making it easier for users to quickly identify and quantify their results. sRIS is available at http://sris.itps.ncku.edu.tw/.


Assuntos
Genoma de Planta/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Plantas/genética , RNA de Plantas/genética , Pequeno RNA não Traduzido/genética , Biblioteca Genômica , MicroRNAs/genética , MicroRNAs/fisiologia , RNA de Plantas/fisiologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/fisiologia , Pequeno RNA não Traduzido/fisiologia , Análise de Sequência de RNA/métodos
20.
Cancer Prev Res (Phila) ; 13(3): 229-240, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32132117

RESUMO

The discovery of aberrant crypt foci (ACF) more than three decades ago not only enhanced our understanding of how colorectal tumors form, but provided new opportunities to detect lesions prior to adenoma development and intervene in the colorectal carcinogenesis process even earlier. Because not all ACF progress to neoplasia, it is important to stratify these lesions based on the presence of dysplasia and establish early detection methods and interventions that specifically target dysplastic ACF (microadenomas). Significant progress has been made in characterizing the morphology and genetics of dysplastic ACF in both preclinical models and humans. Image-based methods have been established and new techniques that utilize bioactivatable probes and capture histologic abnormalities in vivo are emerging for lesion detection. Successful identification of agents that target dysplastic ACF holds great promise for intervening even earlier in the carcinogenesis process to maximize tumor inhibition. Future preclinical and clinical prevention studies should give significant attention to assessing the utility of dysplastic ACF as the earliest identifiable biomarker of colorectal neoplasia and response to therapy.See all articles in this Special Collection Honoring Paul F. Engstrom, MD, Champion of Cancer Prevention.


Assuntos
Focos de Criptas Aberrantes/terapia , Adenoma/prevenção & controle , Antineoplásicos/uso terapêutico , Neoplasias Colorretais/prevenção & controle , Suplementos Nutricionais , Focos de Criptas Aberrantes/diagnóstico , Focos de Criptas Aberrantes/genética , Focos de Criptas Aberrantes/patologia , Adenoma/patologia , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Antineoplásicos/farmacologia , Aspirina/farmacologia , Aspirina/uso terapêutico , Atorvastatina/farmacologia , Atorvastatina/uso terapêutico , Carcinogênese/efeitos dos fármacos , Catequina/administração & dosagem , Catequina/análogos & derivados , Ensaios Clínicos como Assunto , Colo/diagnóstico por imagem , Colo/efeitos dos fármacos , Colo/patologia , Colonoscopia , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Humanos , Mucosa Intestinal/diagnóstico por imagem , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Licopeno/administração & dosagem , Camundongos , Mutação , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...