Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insects ; 15(6)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38921170

RESUMO

Ecosystem engineers influence the structure and function of soil food webs through non-trophic interactions. The activity of large soil animals, such as earthworms, has a significant impact on the soil microarthropod community. However, the influence of millipedes on soil microarthropod communities remains largely unknown. In this microcosm experiment, we examined the effects of adding, removing, and restricting millipede activity on Acari and Collembola communities in litter and soil by conducting two destructive sampling sessions on days 10 and 30, respectively. At the time of the first sampling event (10 d), Acari and Collembola abundance was shown to increase and the alpha diversity went higher in the treatments with millipedes. At the time of the second sampling event (30 d), millipedes significantly reduced the Collembola abundance and alpha diversity. The results were even more pronounced as the millipedes moved through the soil, which caused the collembolans to be more inclined to inhabit the litter, which in turn resulted in the increase in the abundance and diversity of Acari in the soil. The rapid growth of Collembola in the absence of millipedes significantly inhibited the abundance of Acari. The presence of millipedes altered the community structure of Acari and Collembola, leading to a stronger correlation between the two communities. Changes in these communities were driven by the dominant taxa of Acari and Collembola. These findings suggest that millipedes, as key ecosystem engineers, have varying impacts on different soil microarthropods. This study enhances our understanding of biological interactions and offers a theoretical foundation for soil biodiversity conservation.

2.
Sci Total Environ ; 905: 166959, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37696400

RESUMO

There is a growing body of evidence that suggests that both biodegradable and conventional (non-degradable) microplastics (MP) are hazardous to soil health by affecting the delivery of key ecological functions such as litter decomposition, nutrient cycling and water retention. Specifically, soil fauna may be harmed by the presence of MPs while also being involved in their disintegration, degradation, migration and transfer in soil. Therefore, a comprehensive understanding of the interactions between MPs and soil fauna is essential. Here, we conducted a 120-day soil microcosm experiment applying polyethylene (PE) and polylactic acid (PLA), in the absence/presence of the earthworm Eisenia nordenskioldi to estimate the relative singular and combined impact of MPs and earthworms on the soil bacterial community. Our findings revealed contrasting effects of PE and PLA on the composition and diversity of soil bacteria. All treatments affected the community and network structure of the soil bacterial community. Compared to the control (no MPs or earthworms), PE decreased bacterial alpha diversity, while PLA increased it. Patescibacteria were found to be significantly abundant in the PE group whereas Actinobacteria and Gemmatimonadetes were more abundant in PE, and PLA and earthworms groups. The presence of earthworms appeared to mediate the impact of PE/PLA on soil bacteria, potentially through bacterial consumption or by altering soil properties (e.g., pH, aeration, C availability). Earthworm presence also appeared to promote the chemical aging of PLA. Collectively, our results provide novel insights into the soil-fauna-driven impact of degradable/nondegradable MPs exposure on the long-term environmental risks associated with soil microorganisms.


Assuntos
Oligoquetos , Polietileno , Animais , Polietileno/toxicidade , Microplásticos , Plásticos , Poliésteres , Bactérias , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...