Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(22): 25680-25692, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35605189

RESUMO

The accelerated evolution of the Internet of Things has brought new challenges to the gas sensors, which are required to work persistently under harsh conditions, like high humidity. However, currently, it is quite challenging to solve the hindrance of the trade-off between gas-sensing performance and anti-humidity ability of the chemiresistive gas sensors. Herein, hydrophobic inorganic CeO2/SnO2 heterostructure films were prepared by depositing the CeO2 layers with a thickness of a few nanometers onto the SnO2 film via a magnetron sputtering method. The sensors based on the CeO2/SnO2 heterostructure films demonstrated excellent gas-sensing performance toward trimethylamine (TEA) with high response, wide detection range (0.04-500 ppm), low record detection limit (0.04 ppm), ideal reproducibility, and long-term stability, while concurrently possessing promising anti-humidity ability. A portable, wireless TEA-sensing system containing the CeO2/SnO2 sensor was constructed to realize the real-time monitoring of trace concentration of the volatiles released from a fish. This work provides a novel strategy to prepare advanced chemiresistive gas sensors for humidity-independent detection of harmful gases and vapors and will accelerate their commercialization process in the field of food safety and public health.

2.
ACS Appl Mater Interfaces ; 13(46): 55307-55318, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34762410

RESUMO

Currently, the exploration of wearable strain sensors that can work under subzero temperatures while simultaneously possessing anti-interference capability toward temperature is still a grand challenge. Herein, we present a low-temperature wearable strain sensor that is constructed via the incorporation of a Ag nanowires/graphene (Ag NWs/G) composite into the polydimethylsiloxane (PDMS) polymer. The Ag NWs/G/PDMS strain sensor exhibits promising flexibility at a very low temperature (-40 °C), outstanding fatigue resistance with low hysteresis energy, and near-zero temperature coefficient of resistance (TCR). The Ag NWs/G/PDMS strain sensor shows excellent sensing performance under subzero temperatures with a very high gauge factor of 9156 under a strain of >36%, accompanied by a noninterference characteristic to temperature (-40 to 20 °C). The Ag NWs/G/PDMS strain sensor also demonstrates the feasibility of monitoring various human movements such as finger bending, arm waving, wrist rotation, and knee bending under both room temperature and low-temperature conditions. This work initiates a new promising strategy to construct next-generation wearable strain sensors that can work stably and effectively under very low temperatures.

3.
Front Microbiol ; 10: 1111, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31164881

RESUMO

The marine bacterium, Vibrio natriegens, grows quickly in a marine environment and can significantly accelerate the corrosion of steel materials. Here, we present an approach to inhibit V. natriegens-induced corrosion by biomineralization. The corrosion of steel is mitigated in seawater via the formation of a biomineralized film induced by Bacillus subtilis. The film is composed of extracellular polymeric substances (EPS) and calcite, exhibiting stable anti-corrosion activity. The microbial diversity and medium chemistry tests demonstrated that the inhibition of V. natriegens growth by B. subtilis was essential for the formation of the biomineralized film.

4.
Polymers (Basel) ; 11(5)2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31083352

RESUMO

The corrosion behavior of zinc-rich epoxy primers or paints (ZRPs) with different conducting polyaniline-grafted graphene (PANI/Gr) contents was investigated. Conductivity of the formed PANI/Gr nanosheets was significantly improved by employing the Gr as the inner template to synthesize the PANI. The protective properties and electrochemical behavior of coatings with artificial defects were investigated by monitoring the free corrosion potential versus time and by using localized electrochemical impedance spectroscopy (LEIS). A synergetic enhancement of the physical barrier role of the coating and the zinc sacrificial cathodic protection was achieved in the case of ZRP including PANI/Gr nanosheets. In addition, the ZRP mixed with the PANI/Gr at a content of 0.6% exhibited the best anticorrosion performance across the range of investigated PANI/Gr contents.

5.
ACS Appl Mater Interfaces ; 10(46): 40317-40327, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30335931

RESUMO

Steel corrosion is a global problem in marine engineering. Numerous inhibitory treatments have been applied to mitigate the degradation of metallic materials; however, they typically have a high cost and are not environmental friendly. Here, we present a novel and "green" approach for the protection of steel by a marine bacterium Pseudoalteromonas lipolytica. This approach protects steel from corrosion in seawater via the formation of a biofilm followed by the formation of an organic-inorganic hybrid film. The hybrid film is composed of multiple layers of calcite and bacterial extracellular polymeric substances, exhibiting high and stable barrier protection efficiency and further providing an in situ self-healing activity. The process involving the key transition from biofilm to biomineralized film is essential for its lasting anticorrosion activity, which overcomes the instability of biofilm protection on corrosion. Therefore, this study introduces a new perspective and an option for anticorrosion control in marine environments.


Assuntos
Biofilmes , Pseudoalteromonas , Água do Mar/microbiologia , Microbiologia da Água , Celulose/química , Corrosão , Eletroquímica , Microscopia Eletrônica de Varredura , Oceanos e Mares , Plasmídeos/metabolismo , Polímeros/química , Aço , Temperatura , Difração de Raios X
6.
ACS Appl Mater Interfaces ; 10(41): 35154-35163, 2018 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-30277387

RESUMO

Solar vapor generation has attracted tremendous attention as one of the most efficient ways of utilizing solar energy. It is highly desirable to develop low-cost, eco-friendly, and high-efficiency solar absorbers for practical applications of solar vapor generation. Herein, a three-dimensional plasmonic covellite CuS hierarchical nanostructure has been synthesized as the light-absorbing material via a facile one-pot hydrothermal method for structurally integrated solar absorbers with microporous poly(vinylidene fluoride) membrane (PVDFM) as the supporting material. A broadband and highly efficient light absorption has been achieved in the wavelength of 300-2500 nm, along with high water evaporation efficiencies of 90.4 ± 1.1 and 93.3 ± 2.0% under 1 and 4 sun irradiation, respectively. Meanwhile, stable performance has been demonstrated for over 20 consecutive runs without much performance degradation. To the best of our knowledge, this is the highest performance among the copper sulfide-based solar absorbers. With the additional features of low-cost and convenient fabrication, this plasmonic solar absorber exhibits a tremendous potential for practical solar vapor generation.

7.
Nanotechnology ; 29(18): 185707, 2018 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-29457781

RESUMO

In this work, we realized the large-scale synthesis of WO3 · H2O nanoflakes (NFs), g-C3N4/WO3 · H2O nanocomposite (NC) and graphene (G)/WO3 · H2O NC via a sonochemical process with tungsten salt as the precursor, g-C3N4 or G sheets as the supports, and distilled water as the solvent. Both the g-C3N4/WO3 · H2O NC and G/WO3 · H2O NC exhibited much better electrochromic (EC) performance (higher coloration efficiencies and faster response times) than that of the WO3 · H2O NFs. Using the WO3 · H2O-based materials as electrode materials, EC batteries that integrate the energy storage and EC functions in one device have been assembled. The energy status of the EC batteries could be visually indicated by the reversible color variations. Compared with the plain WO3 · H2O-based EC batteries, the NC-based EC batteries possessed a lower color contrast between the charged and discharged conditions but much longer discharge durations. The EC batteries could be quickly charged in a few seconds by adding H2O2, and the charged batteries exhibited significantly-enhanced discharging durations in comparison with the initial ones. The g-C3N4/WO3 · H2O NC-EC batteries charged by a small amount of H2O2 could produce a long discharging duration up to 760 min.

8.
Polymers (Basel) ; 10(6)2018 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-30966625

RESUMO

The effect of single-layer graphene sheets (Gr) on the corrosion protection of zinc-rich epoxy primers (ZRPs) was investigated. Scanning electron microscopy (SEM) with an energy dispersive spectrometer (EDS) were used to characterize morphology and composition of the coatings after immersion for 25 days. The cross-sectional SEM images and X-ray photoelectron spectroscopy (XPS) confirmed that the addition of single-layer graphene facilitated assembling of zinc oxides on the interface between the coating and the steel. The open circuit potential (OCP), electrochemical impedance spectroscopy (EIS) measurements revealed that both the cathodic protection and barrier performance of the ZRP were enhanced after addition of 0.6 wt. % Gr (Gr0.6-ZRP). In addition, the cathodic protection property of the Gr0.6-ZRP was characterized quantitatively by localized electrochemical impedance spectroscopy (LEIS) in the presence of an artificial scratch on the coating. The results demonstrate that moderate amounts of single-layer graphene can significantly improve corrosion resistance of ZRP, due to the barrier protection and cathodic protection effects.

9.
Nanotechnology ; 28(13): 135705, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28206981

RESUMO

A novel sandwich-like MnO2/g-C3N4 nanocomposite (NC) based on the integration of high-density MnO2 nanorods (NRs) onto the surfaces of two-dimensional (2D) g-C3N4 sheets has been successfully fabricated through a facile soft chemical route at low temperature. The MnO2/g-C3N4 NC electrode enhanced the supercapacitor (SC) performance, benchmarked against both the bare MnO2 NRs electrode and the MnO2/graphene oxide (GO) NC electrode, exhibiting high specific capacitance of 211 F/g at a current density of 1 A/g, with good rate capacity and cycling stability. The sandwich-like hybrid structure, the unique 2D structure of the g-C3N4 sheets and the presence of nitrogen in the g-C3N4 all contributed to the promising SC performance of the MnO2/g-C3N4 NC. This work demonstrated the advantages of the g-C3N4 sheets over the commonly-used GO sheets in the design of novel hybrid composite for enhanced capacitance performance of MnO2-based electrochemical SCs, and the results could be extended to other electrode materials for SCs.

10.
Colloids Surf B Biointerfaces ; 116: 793-6, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24503414

RESUMO

This study describes the synthesis of silver nanocomposites (Ag NCs), with different structures, decorated with silica nanoparticles (SiO2 NPs) and their antibacterial activity was evaluated. The core-shell microspheres were fabricated by the deposition of polydopamine (PDA) formed by the spontaneous oxidative polymerization of dopamine. Simultaneously, Ag(+) ions were reduced to nanosilver and subsequently deposited on the surface of the SiO2/PDA spheres to form SiO2/PDA/Ag NPs. Moreover, nanosilver encapsulated in mesoporous SiO2 NPs (Ag-MSN) were investigated for bactericidal activity to facilitate comparisons. Bacterial growth curves and reactive oxygen species (ROS) assays indicated that both Ag-MSN and SiO2/PDA/Ag NPs exhibited antimicrobial activity; however, at different stages, due to their distinct structures. This study revealed that the production of ROS and damage to the membrane were the two major mechanisms of the bactericidal activity of Ag NCs. The antibacterial mechanisms for each NC are discussed and supported by observations from transmission electron microscopy.


Assuntos
Nanocompostos/química , Prata/farmacologia , Vibrio/efeitos dos fármacos , Antibacterianos , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Estrutura Molecular , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo , Prata/química , Relação Estrutura-Atividade , Propriedades de Superfície
11.
Nanotechnology ; 22(26): 265603, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21576793

RESUMO

Cerium (Ce)-doped tungsten oxide nanostructures have been generated by using a simple solvothermal method with cerium chloride salts and tungsten hexachloride as precursors. The as-synthesized samples were characterized by electron microscopy, x-ray diffraction and x-ray photoelectron spectrometry. The photocatalytic activities of the samples were evaluated by degradation of methyl orange in an aqueous solution under visible light irradiation. Results showed that the as-synthesized samples underwent morphological evolution with decreasing W/Ce molar ratio, from one-dimensional bundled nanowires through straighter, shorter and thicker bundled nanorods to two-dimensional bundled blocks, then to a mixture of bundled nanorods and agglomerated nanoparticles, and finally to particle agglomerates. The Ce-doped tungsten oxides exhibited better photocatalytic activities than that of the undoped tungsten oxide. The cerium-doped tungsten oxide bundled blocks synthesized with a W/Ce molar ratio of 15:1 possessed the most effective photocatalytic activity among the tested samples. These novel nanomaterials may find potential applications as visible-light-driven photocatalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...