Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Sci ; 26(1): 55, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31366399

RESUMO

BACKGROUND: Mutations in the PB1 subunit of RNA-dependent RNA polymerase (RdRp) of influenza A virus can affect replication fidelity. Before the influenza A/H1N1 pandemic in 2009, most human influenza A/H1N1 viruses contained the avian-associated residue, serine, at position 216 in PB1. However, near the onset of the 2009 pandemic, human viruses began to acquire the mammalian-associated residue, glycine, at PB1-216, and PB1-216G became predominant in human viruses thereafter. METHODS: Using entropy-based analysis algorithm, we have previously identified several host-specific amino-acid signatures that separated avian and swine viruses from human influenza viruses. The presence of these host-specific signatures in human influenza A/H1N1 viruses suggested that these mutations were the result of adaptive genetic evolution that enabled these influenza viruses to circumvent host barriers, which resulted in cross-species transmission. We investigated the biological impact of this natural avian-to-mammalian signature substitution at PB1-216 in human influenza A/H1N1 viruses. RESULTS: We found that PB1-216G viruses had greater mutation potential, and were more sensitive to ribavirin than PB1-216S viruses. In oseltamivir-treated HEK293 cells, PB1-216G viruses generated mutations in viral neuraminidase at a higher rate than PB1-216S viruses. By contrast, PB1-216S viruses were more virulent in mice than PB1-216G viruses. These results suggest that the PB1-S216G substitution enhances viral epidemiological fitness by increasing the frequency of adaptive mutations in human influenza A/H1N1 viruses. CONCLUSIONS: Our results thus suggest that the increased adaptability and epidemiological fitness of naturally arising human PB1-216G viruses, which have a canonical low-fidelity replicase, were the biological mechanisms underlying the replacement of PB1-216S viruses with a high-fidelity replicase following the emergence of pdmH1N1. We think that continued surveillance of such naturally occurring PB1-216 variants among others is warranted to assess the potential impact of changes in RdRp fidelity on the adaptability and epidemiological fitness of human A/H1N1 influenza viruses.


Assuntos
Vírus da Influenza A/fisiologia , Proteínas Virais/genética , Replicação Viral/genética , Adaptação Fisiológica/genética , Animais , Cães , Células HEK293 , Humanos , Vírus da Influenza A/genética , Células Madin Darby de Rim Canino , Mutação/genética , Proteínas Virais/metabolismo , Virulência/genética
2.
J Biomed Sci ; 22: 74, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26362772

RESUMO

BACKGROUND: To construct safer recombinant flavivirus vaccine, we exploited Japanese encephalitis virus (JEV) replicon-based platform to generate single-round infectious particles (SRIPs) that expressed heterologous neutralizing epitope SP70 derived from enterovirus-71 (EV71). Such pseudo-infectious virus particles, named SRIP-SP70, although are not genuine viable viruses, closely mimic live virus infection to elicit immune responses within one round of viral life cycle. RESULTS: We found that, besides gaining of full protection to thwart JEV lethal challenge, female outbred ICR mice, when were immunized with SRIP-SP70 by prime-boost protocol, could not only induce SP70-specific and IgG2a predominant antibodies but also provide their newborns certain degree of protection against EV71 lethal challenge. CONCLUSIONS: Our results therefore exemplify that this vaccination strategy could indeed confer an immunized host a dual protective immunity against subsequent lethal challenge from JEV or EV71.


Assuntos
Vírus da Encefalite Japonesa (Espécie)/imunologia , Enterovirus Humano A/imunologia , Infecções por Enterovirus/prevenção & controle , Epitopos/imunologia , Replicon/imunologia , Vacinas Virais/imunologia , Animais , Cricetinae , Vírus da Encefalite Japonesa (Espécie)/genética , Enterovirus Humano A/genética , Infecções por Enterovirus/genética , Infecções por Enterovirus/imunologia , Infecções por Enterovirus/patologia , Epitopos/genética , Feminino , Regulação Viral da Expressão Gênica/imunologia , Humanos , Camundongos , Camundongos Endogâmicos ICR , Vacinas Virais/genética , Vacinas Virais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...