Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 187(12): 3024-3038.e14, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38781969

RESUMO

Plants frequently encounter wounding and have evolved an extraordinary regenerative capacity to heal the wounds. However, the wound signal that triggers regenerative responses has not been identified. Here, through characterization of a tomato mutant defective in both wound-induced defense and regeneration, we demonstrate that in tomato, a plant elicitor peptide (Pep), REGENERATION FACTOR1 (REF1), acts as a systemin-independent local wound signal that primarily regulates local defense responses and regenerative responses in response to wounding. We further identified PEPR1/2 ORTHOLOG RECEPTOR-LIKE KINASE1 (PORK1) as the receptor perceiving REF1 signal for plant regeneration. REF1-PORK1-mediated signaling promotes regeneration via activating WOUND-INDUCED DEDIFFERENTIATION 1 (WIND1), a master regulator of wound-induced cellular reprogramming in plants. Thus, REF1-PORK1 signaling represents a conserved phytocytokine pathway to initiate, amplify, and stabilize a signaling cascade that orchestrates wound-triggered organ regeneration. Application of REF1 provides a simple method to boost the regeneration and transformation efficiency of recalcitrant crops.


Assuntos
Proteínas de Plantas , Regeneração , Transdução de Sinais , Solanum lycopersicum , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Solanum lycopersicum/metabolismo , Regulação da Expressão Gênica de Plantas , Peptídeos/metabolismo
3.
Nat Plants ; 9(10): 1659-1674, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37723204

RESUMO

Crop breeding for mechanized harvesting has driven modern agriculture. In tomato, machine harvesting for industrial processing varieties became the norm in the 1970s. However, fresh-market varieties whose fruits are suitable for mechanical harvesting are difficult to breed because of associated reduction in flavour and nutritional qualities. Here we report the cloning and functional characterization of fs8.1, which controls the elongated fruit shape and crush resistance of machine-harvestable processing tomatoes. FS8.1 encodes a non-canonical GT-2 factor that activates the expression of cell-cycle inhibitor genes through the formation of a transcriptional module with the canonical GT-2 factor SlGT-16. The fs8.1 mutation results in a lower inhibitory effect on the cell proliferation of the ovary wall, leading to elongated fruits with enhanced compression resistance. Our study provides a potential route for introducing the beneficial allele into fresh-market tomatoes without reducing quality, thereby facilitating mechanical harvesting.


Assuntos
Solanum lycopersicum , Solanum lycopersicum/genética , Frutas/genética , Frutas/metabolismo , Melhoramento Vegetal , Agricultura
4.
Plant Cell ; 35(3): 1038-1057, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36471914

RESUMO

Fruit ripening relies on the precise spatiotemporal control of RNA polymerase II (Pol II)-dependent gene transcription, and the evolutionarily conserved Mediator (MED) coactivator complex plays an essential role in this process. In tomato (Solanum lycopersicum), a model climacteric fruit, ripening is tightly coordinated by ethylene and several key transcription factors. However, the mechanism underlying the transmission of context-specific regulatory signals from these ripening-related transcription factors to the Pol II transcription machinery remains unknown. Here, we report the mechanistic function of MED25, a subunit of the plant Mediator transcriptional coactivator complex, in controlling the ethylene-mediated transcriptional program during fruit ripening. Multiple lines of evidence indicate that MED25 physically interacts with the master transcription factors of the ETHYLENE-INSENSITIVE 3 (EIN3)/EIN3-LIKE (EIL) family, thereby playing an essential role in pre-initiation complex formation during ethylene-induced gene transcription. We also show that MED25 forms a transcriptional module with EIL1 to regulate the expression of ripening-related regulatory as well as structural genes through promoter binding. Furthermore, the EIL1-MED25 module orchestrates both positive and negative feedback transcriptional circuits, along with its downstream regulators, to fine-tune ethylene homeostasis during fruit ripening.


Assuntos
Solanum lycopersicum , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Solanum lycopersicum/genética , Frutas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...