Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Acta Physiologica Sinica ; (6): 151-159, 2021.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-878244

RESUMO

Integrins are a large family of heterodimeric cell adhesion molecules composed of α and β subunits. Through interaction with their specific ligands, integrins mediate cell-cell and cell-extracellular matrix interactions. Via outside-in signaling, integrins can recruit cytoplasmic proteins to their intracellular domains and then cluster into supramolecular structures and trigger downstream signaling. Integrin activation is associated with a global conformation rearrangement from bent to extended in ectodomains and the separation of α and β subunit cytoplasmic domains. During cell migration, integrins regulate the focal adhesion dynamics and transmit forces between the extracellular matrix and the cell cytoskeleton. In tumor microenvironment, integrins on multiple kinds of cells could be activated, which modulates cell migration into tumor and contributes to angiogenesis and tumor metastasis. Here, we review the mechanism of integrin activation, dynamics of focal adhesions during cell migration and tumor metastasis.


Assuntos
Adesão Celular , Moléculas de Adesão Celular , Adesões Focais , Integrinas , Transdução de Sinais
2.
Aging Cell ; 19(8): e13191, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32666649

RESUMO

Changes in mitochondrial dynamics (fusion and fission) are known to occur during stem cell differentiation; however, the role of this phenomenon in tissue aging remains unclear. Here, we report that mitochondrial dynamics are shifted toward fission during aging of Drosophila ovarian germline stem cells (GSCs), and this shift contributes to aging-related GSC loss. We found that as GSCs age, mitochondrial fragmentation and expression of the mitochondrial fission regulator, Dynamin-related protein (Drp1), are both increased, while mitochondrial membrane potential is reduced. Moreover, preventing mitochondrial fusion in GSCs results in highly fragmented depolarized mitochondria, decreased BMP stemness signaling, impaired fatty acid metabolism, and GSC loss. Conversely, forcing mitochondrial elongation promotes GSC attachment to the niche. Importantly, maintenance of aging GSCs can be enhanced by suppressing Drp1 expression to prevent mitochondrial fission or treating with rapamycin, which is known to promote autophagy via TOR inhibition. Overall, our results show that mitochondrial dynamics are altered during physiological aging, affecting stem cell homeostasis via coordinated changes in stemness signaling, niche contact, and cellular metabolism. Such effects may also be highly relevant to other stem cell types and aging-induced tissue degeneration.


Assuntos
Células-Tronco Germinativas Adultas/metabolismo , Dinâmica Mitocondrial/genética , Células-Tronco/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Drosophila , Feminino , Masculino , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...