Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 8: 830, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28559879

RESUMO

Black Sigatoka disease, caused by Pseudocercospora fijiensis is a serious constraint to banana production worldwide. The disease continues to spread in new ecological niches and there is an urgent need to develop strategies for its control. The high osmolarity glycerol (HOG) pathway in Saccharomyces cerevisiae is well known to respond to changes in external osmolarity. HOG pathway activation leads to phosphorylation, activation and nuclear transduction of the HOG1 mitogen-activated protein kinases (MAPKs). The activated HOG1 triggers several responses to osmotic stress, including up or down regulation of different genes, regulation of protein translation, adjustments to cell cycle progression and synthesis of osmolyte glycerol. This study investigated the role of the MAPK-encoding PfHog1 gene on osmotic stress adaptation and virulence of P. fijiensis. RNA interference-mediated gene silencing of PfHog1 significantly suppressed growth of P. fijiensis on potato dextrose agar media supplemented with 1 M NaCl, indicating that PfHog1 regulates osmotic stress. In addition, virulence of the PfHog1-silenced mutants of P. fijiensis on banana was significantly reduced, as observed from the low rates of necrosis and disease development on the infected leaves. Staining with lacto phenol cotton blue further confirmed the impaired mycelial growth of the PfHog1 in the infected leaf tissues, which was further confirmed with quantification of the fungal biomass using absolute- quantitative PCR. Collectively, these findings demonstrate that PfHog1 plays a critical role in osmotic stress regulation and virulence of P. fijiensis on its host banana. Thus, PfHog1 could be an interesting target for the control of black Sigatoka disease in banana.

2.
Sci Rep ; 5: 8127, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25634654

RESUMO

Plant parasitic nematodes impose losses of up to 70% on plantains and cooking bananas in Africa. Application of nematicides is inappropriate and resistant cultivars are unavailable. Where grown, demand for plantain is more than for other staple crops. Confined field testing demonstrated that transgenic expression of a biosafe, anti-feedant cysteine proteinase inhibitor and an anti-root invasion, non-lethal synthetic peptide confers resistance to plantain against the key nematode pests Radopholus similis and Helicotylenchus multicinctus. The best peptide transgenic line showed improved agronomic performance relative to non-transgenic controls and provided about 99% nematode resistance at harvest of the mother crop. Its yield was about 186% in comparison with the nematode challenged control non-transgenic plants based on larger bunches and diminished plant toppling in storms, due to less root damage. This is strong evidence for utilizing this resistance to support the future food security of 70 million, mainly poor Africans that depend upon plantain as a staple food.


Assuntos
Resistência à Doença , Abastecimento de Alimentos , Nematoides/fisiologia , Doenças das Plantas/imunologia , Doenças das Plantas/parasitologia , Plantago/parasitologia , África , Agricultura , Animais , Análise por Conglomerados , Flores/fisiologia , Necrose , Folhas de Planta/anatomia & histologia , Raízes de Plantas/parasitologia , Plantago/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Análise de Regressão , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...