Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35408508

RESUMO

Diabetic nephropathy (DN) is a leading cause of end-stage renal disease. An elevated fatty acid plasma concentration leads to podocyte injury and DN progression. This study aimed to identify and characterize cellular mechanisms of natural compounds that inhibit palmitic acid (PA)-induced human podocyte injury. By screening 355 natural compounds using a cell viability assay, 3-hydroxyterphenyllin (3-HT) and candidusin A (CDA), isolated from the marine-derived fungus Aspergillus candidus PSU-AMF169, were found to protect against PA-induced podocyte injury, with half-maximal inhibitory concentrations (IC50) of ~16 and ~18 µM, respectively. Flow cytometry revealed that 3-HT and CDA suppressed PA-induced podocyte apoptosis. Importantly, CDA significantly prevented PA-induced podocyte barrier impairment as determined by 70 kDa dextran flux. Reactive oxygen species (ROS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) direct scavenging assays indicated that both compounds exerted an anti-oxidative effect via direct free radical-scavenging activity. Moreover, 3-HT and CDA upregulated the anti-apoptotic Bcl2 protein. In conclusion, 3-HT and CDA represent fungus-derived bioactive compounds that have a novel protective effect on PA-induced human podocyte apoptosis via mechanisms involving free radical scavenging and Bcl2 upregulation.


Assuntos
Nefropatias Diabéticas , Podócitos , Apoptose , Nefropatias Diabéticas/metabolismo , Fungos/metabolismo , Humanos , Ácido Palmítico/metabolismo , Ácido Palmítico/farmacologia , Podócitos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Compostos de Terfenil
2.
Int J Artif Organs ; 45(1): 96-102, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33380250

RESUMO

To address the remaining issue of poor cell immobilization and insufficient mass transfer in scaffold-based tissue engineering approach for future islet transplantation, we employed a macro-porous poly-l-lactide (PLLA) scaffold immobilizing mouse insulinoma cells and studied its function toward an implantable pancreatic tissue in 7-day perfusion culture. The murine pancreatic ß cells could be immobilized in the PLLA scaffold at a high density of 107 cells per cm3 close to the estimated range in normal pancreas. The perfusion culture promoted the 3D cellular organization as observed with live/dead staining and histological staining. The insulin production was significantly enhanced in comparison with static 2D culture and 3D rotational suspension culture by two and six folds, respectively (p < 0.001). As enhanced insulin response was only observed where both the perfusion and 3D cellular organization were present, this could represent important elements in engineering a functional bioartificial pancreas.


Assuntos
Insulinoma , Neoplasias Pancreáticas , Animais , Insulina , Camundongos , Perfusão , Poliésteres , Porosidade , Engenharia Tecidual , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...