Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
PeerJ ; 5: e3277, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28480145

RESUMO

BACKGROUND: The study of ancient microorganisms in mineralized dental plaque or calculi is providing insights into microbial evolution, as well as lifestyles and disease states of extinct cultures; yet, little is still known about the oral microbial community structure and function of pre-Columbian Caribbean cultures. In the present study, we investigated the dental calculi microbiome and predicted function of one of these cultures, known as the Saladoid. The Saladoids were horticulturalists that emphasized root-crop production. Fruits, as well as small marine and terrestrial animals were also part of the Saladoid diet. METHODS: Dental calculi samples were recovered from the archaeological site of Sorcé, in the municipal island of Vieques, Puerto Rico, characterized using 16S rRNA gene high-throughput sequencing, and compared to the microbiome of previously characterized coprolites of the same culture, as well modern plaque, saliva and stool microbiomes available from the Human Microbiome Project. RESULTS: Actinobacteria, Proteobacteria and Firmicutes comprised the majority of the Saladoid dental calculi microbiome. The Saladoid dental calculi microbiome was distinct when compared to those of modern saliva and dental plaque, but showed the presence of common inhabitants of modern oral cavities including Streptococcus sp., Veillonella dispar and Rothia mucilaginosa. Cell motility, signal transduction and biosynthesis of other secondary metabolites may be unique features of the Saladoid microbiome. DISCUSSION: Results suggest that the Saladoid dental calculi microbiome structure and function may possibly reflect a horticulturalist lifestyle and distinct dietary habits. Results also open the opportunity to further elucidate oral disease states in extinct Caribbean cultures and extinct indigenous cultures with similar lifestyles.

3.
PLoS One ; 10(12): e0144951, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26660678

RESUMO

For ages, specialists from varying fields have studied the diets of the primeval inhabitants of our planet, detecting diet remains in archaeological specimens using a range of morphological and biochemical methods. As of recent, metagenomic ancient DNA studies have allowed for the comparison of the fecal and gut microbiomes associated to archaeological specimens from various regions of the world; however the complex dynamics represented in those microbial communities still remain unclear. Theoretically, similar to eukaryote DNA the presence of genes from key microbes or enzymes, as well as the presence of DNA from viruses specific to key organisms, may suggest the ingestion of specific diet components. In this study we demonstrate that ancient virus DNA obtained from coprolites also provides information reconstructing the host's diet, as inferred from sequences obtained from pre-Columbian coprolites. This depicts a novel and reliable approach to determine new components as well as validate the previously suggested diets of extinct cultures and animals. Furthermore, to our knowledge this represents the first description of the eukaryotic viral diversity found in paleofaeces belonging to pre-Columbian cultures.


Assuntos
DNA Viral/química , Dieta , Retroviridae/genética , Animais , Fezes/virologia , Fósseis , Humanos , Metagenômica , Análise de Sequência de DNA
4.
PLoS One ; 9(9): e106833, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25207979

RESUMO

Coprolites are fossilized feces that can be used to provide information on the composition of the intestinal microbiota and, as we show, possibly on diet. We analyzed human coprolites from the Huecoid and Saladoid cultures from a settlement on Vieques Island, Puerto Rico. While more is known about the Saladoid culture, it is believed that both societies co-existed on this island approximately from 5 to 1170 AD. By extracting DNA from the coprolites, followed by metagenomic characterization, we show that both cultures can be distinguished from each other on the basis of their bacterial and fungal gut microbiomes. In addition, we show that parasite loads were heavy and also culturally distinct. Huecoid coprolites were characterized by maize and Basidiomycetes sequences, suggesting that these were important components of their diet. Saladoid coprolite samples harbored sequences associated with fish parasites, suggesting that raw fish was a substantial component of their diet. The present study shows that ancient DNA is not entirely degraded in humid, tropical environments, and that dietary and/or host genetic differences in ancient populations may be reflected in the composition of their gut microbiome. This further supports the hypothesis that the two ancient cultures studied were distinct, and that they retained distinct technological/cultural differences during an extended period of close proximity and peaceful co-existence. The two populations seemed to form the later-day Taínos, the Amerindians present at the point of Columbian contact. Importantly, our data suggest that paleomicrobiomics can be a powerful tool to assess cultural differences between ancient populations.


Assuntos
Fezes/microbiologia , Microbiologia , Microbiota , Paleontologia , Grupos Populacionais , Dieta , Fezes/parasitologia , Humanos , Porto Rico/etnologia , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA