Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 361: 142523, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38838865

RESUMO

Microplastic (MP) pollution has been widely reported across water matrices including in estuaries, which are important for the understanding of oceanic MPs. Estuaries can greatly alter the fate, transport, size distribution, and abundance of plastic pollution. The aim of this study was to quantify and characterize MP pollution in the Delaware Bay estuary USA, including the size distribution. Samples (N = 31) were collected from the mouth of the Delaware River to the coastal ocean including multiple frontal zones across two sampling campaigns (2019 and 2022). MP were extracted from the collected particles using wet peroxide oxidation and density separation with saturated sodium chloride. Particles collected on 500 µm mesh sieves were analyzed via Fourier transform infrared (FTIR) spectroscopy. Across all samples, 324 of the 1015 particles analyzed were MP, and 11 macroplastics were observed. MP concentrations ranged from below detection to 4.12 MP/m3 (mean 0.34 ± 0.80 MP/m3). No significant differences were observed between sampling sites; nonetheless, the two highest MP concentrations were observed when sampling along frontal zones with visible debris including macroplastics. Polyethylene (53%) and polypropylene (43%) were the most abundant polymers observed. The majority of the non-plastic particles were classified as particulate natural organic matter (82% of non-plastics). Particles from samples collected during 2022 (N = 864) also had color, morphology, and two size dimensions recorded. MP particle size was significantly associated with sampling site, with the coastal ocean sampling site generally having the smallest MPs. A correlation between total post-extraction particles and total plastic particles was observed. Aspect ratios for the plastics ranged from one to 40.7, with larger ratios for fibers, with a mean (±standard deviation) of 3.39 ± 4.72 (unitless). These aspect ratios can be used to select shape factors used to estimate the total volume of MP in the studied size range. Overall, these results can help inform fate, transport, and risk assessments related to estuarine plastic pollution.


Assuntos
Baías , Monitoramento Ambiental , Estuários , Microplásticos , Tamanho da Partícula , Poluentes Químicos da Água , Microplásticos/análise , Poluentes Químicos da Água/análise , Baías/química , Delaware , Plásticos/análise , Rios/química
2.
Sci Total Environ ; 817: 152812, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-34990688

RESUMO

Microplastics (MP) are considered emerging contaminants in the water environment, and there is an interest in understanding their entry into the food web. As a growing body of literature demonstrates the ingestion of MP by zooplankton in controlled laboratory studies, few data are available demonstrating in situ observations of MP in zooplankton. A field survey was performed to collect zooplankton in the highly urbanized Hudson-Raritan estuary. Following washing, sorting by species, and enumeration, three dominant species of copepods (Acartia tonsa, Paracalanus crassirostris and Centropages typicus) were digested. MP were filter concentrated and characterized by size, morphology, and color via microscopy and polymer type by micro-FTIR imaging and/or Raman spectroscopy. MP were observed in all extracts performed on the three copepod species with averages ranging from 0.30 to 0.82 MP individual-1. Polyethylene and polypropylene were the dominant polymer types observed and fragments and beads the most commonly observed morphologies for MP. These data were used to estimate the flux of MP through zooplankton based on gut turnover times, which we compare to estimates of MP entering this environment though the local waterways. The estimated fluxes were sufficiently large, indicating that ingestion by zooplankton is a major sink of MP in the size range subject to zooplankton feeding in surface estuarine waters.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Estuários , Plásticos , Poluentes Químicos da Água/análise , Zooplâncton
3.
Chemosphere ; 272: 129886, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35534967

RESUMO

Comprehensive approaches are needed to understand accumulation patterns and the relative importance of pathways of entry for microplastics in the marine environment. Here, a highly urbanized estuarine environment was sampled along a salinity gradient from the mouth of the Raritan River, (New Jersey, USA) and into the Raritan Bay and the coastal ocean which are further influenced by discharge from the larger Hudson River. Polymers were characterized in two size classes by FTIR and/or Raman spectroscopy. The highest concentration of 500-2000 µm microplastic particles were observed in the mouth of the Raritan during summer low flow conditions, whereas the 250-500 µm microplastic particles were more prevalent in the bay and coastal ocean samples. These results were interpreted using fragmentation and mixing models to provide insight into the sources and fate of microplastics in this estuarine/coastal region. To investigate the potential pathways of entry into the system, samples were collected from various hydraulically connected storm water outfalls and the influent and effluent of wastewater treatment plants and polymer concentrations and types were compared to the estuarine samples. The concentrations of microplastics (500-2000 µm) ranged from 400 to 600 microplastics/m3 in storm water compared to <1-2.75 microplastics/m3 across the estuary. Of interest for analysis is the observed linear correlation between the total concentration of particles in a sample following oxidation and density separation and its microplastic concentration. Overall, the results presented reveal potentially important sources of microplastics in the estuarine environment and have implications for understanding the behavior, transport, and fate of microplastics under varying flow conditions and from estuaries with variable flushing times.


Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Estuários , Plásticos/análise , Polímeros , Água/análise , Poluentes Químicos da Água/análise
4.
Nat Microbiol ; 3(5): 537-547, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29531367

RESUMO

Marine phytoplankton account for approximately half of global primary productivity 1 , making their fate an important driver of the marine carbon cycle. Viruses are thought to recycle more than one-quarter of oceanic photosynthetically fixed organic carbon 2 , which can stimulate nutrient regeneration, primary production and upper ocean respiration 2 via lytic infection and the 'virus shunt'. Ultimately, this limits the trophic transfer of carbon and energy to both higher food webs and the deep ocean 2 . Using imagery taken by the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the Aqua satellite, along with a suite of diagnostic lipid- and gene-based molecular biomarkers, in situ optical sensors and sediment traps, we show that Coccolithovirus infections of mesoscale (~100 km) Emiliania huxleyi blooms in the North Atlantic are coupled with particle aggregation, high zooplankton grazing and greater downward vertical fluxes of both particulate organic and particulate inorganic carbon from the upper mixed layer. Our analyses captured blooms in different phases of infection (early, late and post) and revealed the highest export flux in 'early-infected blooms' with sinking particles being disproportionately enriched with infected cells and subsequently remineralized at depth in the mesopelagic. Our findings reveal viral infection as a previously unrecognized ecosystem process enhancing biological pump efficiency.


Assuntos
Carbono/metabolismo , Haptófitas/virologia , Phycodnaviridae/fisiologia , Ciclo do Carbono , Cadeia Alimentar , Haptófitas/fisiologia , Oceanos e Mares , Fitoplâncton/fisiologia , Fitoplâncton/virologia , Tecnologia de Sensoriamento Remoto , Imagens de Satélites , Água do Mar/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...