Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Philos Trans R Soc Lond B Biol Sci ; 377(1864): 20210325, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36189811

RESUMO

During postnatal cardiac development, cardiomyocytes mature and turn into adult ones. Hence, all cellular properties, including morphology, structure, physiology and metabolism, are changed. One of the most important aspects is the contractile apparatus, of which the minimum unit is known as a sarcomere. Sarcomere maturation is evident by enhanced sarcomere alignment, ultrastructural organization and myofibrillar isoform switching. Any maturation process failure may result in cardiomyopathy. Sarcomere function is intricately related to other organelles, and the growing evidence suggests reciprocal regulation of sarcomere and mitochondria on their maturation. Herein, we summarize the molecular mechanism that regulates sarcomere maturation and the interplay between sarcomere and other organelles in cardiomyocyte maturation. This article is part of the theme issue 'The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease'.


Assuntos
Miócitos Cardíacos , Sarcômeros , Mitocôndrias , Miócitos Cardíacos/metabolismo
2.
Biology (Basel) ; 10(10)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34681080

RESUMO

Mitochondrial cardiomyopathy (MCM) is characterized as an oxidative phosphorylation disorder of the heart. More than 100 genetic variants in nuclear or mitochondrial DNA have been associated with MCM. However, the underlying molecular mechanisms linking genetic variants to MCM are not fully understood due to the lack of appropriate cellular and animal models. Patient-specific induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iPSC-CMs) provide an attractive experimental platform for modeling cardiovascular diseases and predicting drug efficacy to such diseases. Here we introduce the pathological and therapeutic studies of MCM using iPSC-CMs and discuss the questions and latest strategies for research using iPSC-CMs.

3.
Methods Mol Biol ; 2320: 247-259, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34302663

RESUMO

A knock-in can generate fluorescent or Cre-reporter under the control of an endogenous promoter. It also generates knock-out or tagged-protein with fluorescent protein and short tags for tracking and purification. Recent advances in genome editing with clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated protein 9 (Cas9) significantly increased the efficiencies of making knock-in cells. Here we describe the detailed protocols of generating knock-in mouse and human pluripotent stem cells (PSCs) by electroporation and lipofection, respectively.


Assuntos
Sistemas CRISPR-Cas , Técnicas de Introdução de Genes/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Animais , Células Cultivadas , Células Clonais , Meios de Cultura , Primers do DNA , Resistência a Medicamentos/genética , Eletroporação , Células-Tronco Embrionárias/citologia , Edição de Genes/métodos , Genes Reporter , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Puromicina/farmacologia , RNA Guia de Cinetoplastídeos/genética , Reparo de DNA por Recombinação/genética
4.
J Vis Exp ; (169)2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33749676

RESUMO

Pluripotent stem cell-derived cardiomyocytes (PSC-CMs) can be produced from both embryonic and induced pluripotent stem (ES/iPS) cells. These cells provide promising sources for cardiac disease modeling. For cardiomyopathies, sarcomere shortening is one of the standard physiological assessments that are used with adult cardiomyocytes to examine their disease phenotypes. However, the available methods are not appropriate to assess the contractility of PSC-CMs, as these cells have underdeveloped sarcomeres that are invisible under phase-contrast microscopy. To address this issue and to perform sarcomere shortening with PSC-CMs, fluorescent-tagged sarcomere proteins and fluorescent live-imaging were used. Thin Z-lines and an M-line reside at both ends and the center of a sarcomere, respectively. Z-line proteins - α-Actinin (ACTN2), Telethonin (TCAP), and actin-associated LIM protein (PDLIM3) - and one M-line protein - Myomesin-2 (Myom2) - were tagged with fluorescent proteins. These tagged proteins can be expressed from endogenous alleles as knock-ins or from adeno-associated viruses (AAVs). Here, we introduce the methods to differentiate mouse and human pluripotent stem cells to cardiomyocytes, to produce AAVs, and to perform and analyze live-imaging. We also describe the methods for producing polydimethylsiloxane (PDMS) stamps for a patterned culture of PSC-CMs, which facilitates the analysis of sarcomere shortening with fluorescent-tagged proteins. To assess sarcomere shortening, time-lapse images of the beating cells were recorded at a high framerate (50-100 frames per second) under electrical stimulation (0.5-1 Hz). To analyze sarcomere length over the course of cell contraction, the recorded time-lapse images were subjected to SarcOptiM, a plug-in for ImageJ/Fiji. Our strategy provides a simple platform for investigating cardiac disease phenotypes in PSC-CMs.


Assuntos
Corantes Fluorescentes/metabolismo , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes/citologia , Sarcômeros/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Dependovirus/metabolismo , Corpos Embrioides/citologia , Humanos , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Miócitos Cardíacos/citologia , Coloração e Rotulagem , Imagem com Lapso de Tempo
5.
Front Cell Dev Biol ; 8: 178, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32266260

RESUMO

Cardiovascular diseases are the leading cause of death worldwide. Therefore, the discovery of induced pluripotent stem cells (iPSCs) and the subsequent generation of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) was a pivotal point in regenerative medicine and cardiovascular research. They constituted an appealing tool for replacing dead and dysfunctional cardiac tissue, screening cardiac drugs and toxins, and studying inherited cardiac diseases. The problem is that these cells remain largely immature, and in order to utilize them, they must reach a functional degree of maturity. To attempt to mimic in vivo environment, various methods including prolonging culture time, co-culture and modulations of chemical, electrical, mechanical culture conditions have been tried. In addition to that, changing the topology of the culture made huge progress with the introduction of the 3D culture that closely resembles the in vivo cardiac topology and overcomes many of the limitations of the conventionally used 2D models. Nonetheless, 3D culture alone is not enough, and using a combination of these methods is being explored. In this review, we summarize the main differences between immature, fetal-like hiPSC-CMs and adult cardiomyocytes, then glance at the current approaches used to promote hiPSC-CMs maturation. In the second part, we focus on the evolving 3D culture model - it's structure, the effect on hiPSC-CMs maturation, incorporation with different maturation methods, limitations and future prospects.

6.
Sci Rep ; 10(1): 4249, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32144297

RESUMO

Pluripotent stem cell-derived cardiomyocytes (PSC-CMs) hold great promise for disease modeling and drug discovery. However, PSC-CMs exhibit immature phenotypes in culture, and the lack of maturity limits their broad applications. While physical and functional analyses are generally used to determine the status of cardiomyocyte maturation, they could be time-consuming and often present challenges in comparing maturation-enhancing strategies. Therefore, there is a demand for a method to assess cardiomyocyte maturation rapidly and reproducibly. In this study, we found that Myomesin-2 (Myom2), encoding M-protein, is upregulated postnatally, and based on this, we targeted TagRFP to the Myom2 locus in mouse embryonic stem cells. Myom2-RFP+ PSC-CMs exhibited more mature phenotypes than RFP- cells in morphology, function and transcriptionally, conductive to sarcomere shortening assays. Using this system, we screened extracellular matrices (ECMs) and identified laminin-511/521 as potent enhancers of cardiomyocyte maturation. Together, we developed and characterized a novel fluorescent reporter system for the assessment of cardiomyocyte maturation and identified potent maturation-enhancing ECMs through this simple and rapid assay. This system is expected to facilitate use of PSC-CMs in a variety of scientific and medical investigations.


Assuntos
Biomarcadores , Diferenciação Celular , Expressão Gênica , Genes Reporter , Laminina/genética , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Cálcio , Diferenciação Celular/genética , Biologia Computacional/métodos , Matriz Extracelular/metabolismo , Perfilação da Expressão Gênica , Laminina/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Sarcômeros/metabolismo , Transcrição Gênica , Transcriptoma
7.
Mol Cancer Ther ; 17(2): 484-496, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29167312

RESUMO

Aberrant energy metabolism represents a hallmark of cancer and contributes to numerous aggressive behaviors of cancer cells, including cell death and survival. Despite the poor prognosis of mantle cell lymphoma (MCL), due to the inevitable development of drug resistance, metabolic reprograming of MCL cells remains an unexplored area. Posttranslational modification of proteins via O-GlcNAcylation is an ideal sensor for nutritional changes mediated by O-GlcNAc transferase (OGT) and is removed by O-GlcNAcase (OGA). Using various small-molecule inhibitors of OGT and OGA, we found for the first time that O-GlcNAcylation potentiates MCL response to bortezomib. CRISPR interference of MGEA5 (encoding OGA) validated the apoptosis sensitization by O-GlcNAcylation and OGA inhibition. To identify the potential clinical candidates, we tested MCL response to drug-like OGA inhibitor, ketoconazole, and verified that it exerts similar sensitizing effect on bortezomib-induced apoptosis. Investigations into the underlying molecular mechanisms reveal that bortezomib and ketoconazole act in concert to cause the accumulation of truncated Bid (tBid). Not only does ketoconazole potentiate tBid induction, but also increases tBid stability through O-GlcNAcylation that interferes with tBid ubiquitination and proteasomal degradation. Remarkably, ketoconazole strongly enhances bortezomib-induced apoptosis in de novo bortezomib-resistant MCL cells and in patient-derived primary cells with minimal cytotoxic effect on normal peripheral blood mononuclear cells and hepatocytes, suggesting its potential utility as a safe and effective adjuvant for MCL. Together, our findings provide novel evidence that combination of bortezomib and ketoconazole or other OGA inhibitors may present a promising strategy for the treatment of drug-resistant MCL. Mol Cancer Ther; 17(2); 484-96. ©2017 AACR.


Assuntos
Bortezomib/uso terapêutico , Linfoma de Célula do Manto/tratamento farmacológico , N-Acetilglucosaminiltransferases/antagonistas & inibidores , Apoptose , Bortezomib/farmacologia , Humanos , Linfoma de Célula do Manto/patologia , Processamento de Proteína Pós-Traducional , Transdução de Sinais
8.
Sci Rep ; 7(1): 10607, 2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28878262

RESUMO

Aberrant metabolism in hexosamine biosynthetic pathway (HBP) has been observed in several cancers, affecting cellular signaling and tumor progression. However, the role of O-GlcNAcylation, a post-translational modification through HBP flux, in apoptosis remains unclear. Here, we found that hyper-O-GlcNAcylation in lung carcinoma cells by O-GlcNAcase inhibition renders the cells to apoptosis resistance to cisplatin (CDDP). Profiling of various key regulatory proteins revealed an implication of either p53 or c-Myc in the apoptosis regulation by O-GlcNAcylation, independent of p53 status. Using co-immunoprecipitation and correlation analyses, we found that O-GlcNAcylation of p53 under certain cellular contexts, i.e. high p53 activation, promotes its ubiquitin-mediated proteasomal degradation, resulting in a gain of oncogenic and anti-apoptotic functions. By contrast, O-GlcNAcylation of c-Myc inhibits its ubiquitination and subsequent proteasomal degradation. Gene manipulation studies revealed that O-GlcNAcylation of p53/c-Myc is in part a regulator of CDDP-induced apoptosis. Accordingly, we classified CDDP resistance by hyper-O-GlcNAcylation in lung carcinoma cells as either p53 or c-Myc dependence based on their molecular targets. Together, our findings provide novel mechanisms for the regulation of lung cancer cell apoptosis that could be important in understanding clinical drug resistance and suggest O-GlcNAcylation as a potential target for cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genes myc , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , RNA Mensageiro/genética , Transdução de Sinais , beta-N-Acetil-Hexosaminidases/antagonistas & inibidores , beta-N-Acetil-Hexosaminidases/genética , beta-N-Acetil-Hexosaminidases/metabolismo
9.
Asian Pac J Cancer Prev ; 16(12): 5069-73, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26163643

RESUMO

The single nucleotide polymorphism (SNP) rs1053004 in Signal transducer and activator of transcription 3 (STAT3) was recently reported to be associated with chronic hepatitis B (CHB)-related hepatocellular carcinoma (HCC) in a Chinese cohort. This study was aimed at investigating whether the SNP might also contribute to HCC susceptibility in the Thai population. Study subjects were enrolled and divided into 3 groups including CHB-related HCC (n=211), CHB without HCC (n=233) and healthy controls (n=206). The SNP was genotyped using allelic discrimination assays based on TaqMan real-time PCR. Data analysis revealed that the distribution of different genotypes was in Hardy-Weinberg equilibrium (P>0.05). The frequencies of allele T (major allele) in HCC patients, CHB patients and healthy controls were 51.4%, 58.6% and 61.4%, respectively, whereas the frequencies of C allele (minor allele) were 48.6%, 41.4% and 38.6%. The C allele frequency was higher in HCC when compared with CHB patients (odds ratio (OR)=1.34, 95% confidence interval (CI)=1.02-1.74, P=0.032). The genotype of SNP rs1053004 (CC versus TT+TC) was significantly associated with an increased risk when compared with CHB patients (OR=1.83, 95% CI=1.13-2.99, P=0.015). In addition, we observed a similar trend of association when comparing HCC patients with healthy controls (OR=1.77, 95% CI=1.07-2.93, P=0.025) and all controls (OR=1.81, 95% CI=1.19-2.74, P=0.005). These findings suggest that the SNP rs1053004 in STAT3 might contribute to HCC susceptibility and could be used as a genetic marker for HCC in the Thai population.


Assuntos
Carcinoma Hepatocelular/etiologia , Vírus da Hepatite B/genética , Hepatite B Crônica/complicações , Neoplasias Hepáticas/etiologia , Polimorfismo de Nucleotídeo Único/genética , Fator de Transcrição STAT3/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Estudos de Casos e Controles , Feminino , Seguimentos , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Hepatite B Crônica/patologia , Hepatite B Crônica/virologia , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Razão de Chances , Prognóstico , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Risco , Tailândia
10.
Asian Pac J Cancer Prev ; 16(18): 8405-10, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26745093

RESUMO

Hepatitis B virus (HBV) infection is the leading cause of hepatocellular carcinoma (HCC) development. Recent studies demonstrated that single nucleotide polymorphisms (SNPs) rs2293152 in signal transducer and activator of transcription 3 (STAT3) and rs7574865 in signal transducer and activator of transcription 4 (STAT4) are associated with chronic hepatitis B (CHB)-related HCC in the Chinese population. We hypothesized that these polymorphisms might be related to HCC susceptibility in Thai population as well. Study subjects were divided into 3 groups consisting of CHB-related HCC (n=192), CHB without HCC (n=200) and healthy controls (n=190). The studied SNPs were genotyped using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The results showed that the distribution of different genotypes for both polymorphisms were in Hardy-Weinberg equilibrium (P>0.05). Our data demonstrated positive association of rs7574865 with HCC risk when compared to healthy controls under an additive model (GG versus TT: odds ratio (OR) =2.07, 95% confidence interval (CI)=1.06-4.03, P=0.033). This correlation remained significant under allelic and recessive models (OR=1.46, 95% CI=1.09-1.96, P=0.012 and OR=1.71, 95% CI=1.13-2.59, P=0.011, respectively). However, no significant association between rs2293152 and HCC development was observed. These data suggest that SNP rs7574865 in STAT4 might contribute to progression to HCC in the Thai population.


Assuntos
Carcinoma Hepatocelular/etiologia , Vírus da Hepatite B/isolamento & purificação , Hepatite B Crônica/complicações , Neoplasias Hepáticas/etiologia , Polimorfismo de Nucleotídeo Único/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT4/genética , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/epidemiologia , Carcinoma Hepatocelular/patologia , Estudos de Casos e Controles , Feminino , Seguimentos , Predisposição Genética para Doença , Genótipo , Vírus da Hepatite B/genética , Hepatite B Crônica/patologia , Hepatite B Crônica/virologia , Humanos , Técnicas Imunoenzimáticas , Incidência , Neoplasias Hepáticas/epidemiologia , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Polimorfismo de Fragmento de Restrição , Prognóstico , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Risco , Tailândia/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...