Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Rep ; 43(7): 167, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865016

RESUMO

KEY MESSAGE: 63 L. bicolor WRKY genes were identified and their informatics was analyzed. The results suggested that the LbWRKY genes involved in the development and salt secretion of salt glands in L. bicolor. Salt stress, as a universal abiotic stress, severely inhibits the growth and development of plants. WRKY transcription factors play a vital role in plant growth and development, as well as in response to various stresses. Nevertheless, little is known of systematic genome-wide analysis of the WRKY genes in Limonium bicolor, a model recretohalophyte. In this study, 63 L. bicolor WRKY genes were identified (LbWRKY1-63), which were unevenly distributed across seven chromosomes and one scaffold. Based on the structural and phylogenetic characteristics, 63 LbWRKYs are divided into three main groups. Cis-elements in the LbWRKY promoters were related to growth and development, phytohormone responses, and stress responses. Colinearity analysis showed strong colinearity between LbWRKYs and GmWRKYs from soybean (Glycine max). Therefore, LbWRKY genes maybe have similar functions to GmWRKY genes. Expression analysis showed that 28 LbWRKY genes are highly expressed in roots, 9 in stems, 26 in leaves, and 12 in flowers and most LbWRKY genes responded to NaCl, ABA, and PEG6000. Silencing LbWRKY10 reduced salt gland density and salt secretion ability of leaves, and the salt tolerance of the species. Consistent with this, genes associated with salt gland development were markedly down-regulated in the LbWRKY10-silenced lines. Our findings suggested that the LbWRKY genes involved in the development and salt secretion of salt glands in L. bicolor. Our research provides new insights into the functions of the WRKY family in halophytes.


Assuntos
Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas , Plumbaginaceae , Tolerância ao Sal , Plantas Tolerantes a Sal , Fatores de Transcrição , Plumbaginaceae/genética , Plumbaginaceae/fisiologia , Plantas Tolerantes a Sal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tolerância ao Sal/genética , Estresse Salino/genética , Estresse Fisiológico/genética , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas/genética , Genes de Plantas
2.
Ecotoxicol Environ Saf ; 274: 116200, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38479316

RESUMO

Low concentration strontium (LC-Sr) can promote the growth of plants. In order to explore its promoting mechanism from the aspect of photosynthesis, the leaf characteristics, CO2 assimilation and chlorophyll (Chl) a fluorescence kinetics were investigated with hydroponically LC-Sr-treated Chinese cabbage seedlings. After a 28-d treatment to SrCl2 at different concentrations (0.1, 0.2, 0.5, and 1.0 mmol L-1), we observed an increase in the specific leaf weight (SLW) of Chinese cabbage compared with the control group. Notably, as the strontium concentration increased, a more pronounced improvement trend in the contents of Chl and protein in the leaves was observed, contributing to the enhancement of photosynthesis. However, the statistical differences in Pn among various LC-Sr treatments were not significant. Nevertheless, the leaf starch content exhibited a significant increase after LC-Sr treatments. Additionally, Chl a fluorescence transient has been used as a sensitive indicator of the promotional effect of LC-Sr on photosynthesis. The results of fluorescence parameters showed that LC-Sr treatments accelerated the light reaction speed of leaves (Tfm, dV/dto, dVG/dto), improved the energy utilization efficiency of photosystem (PSI and PSII) (ETo/CSo, ψET,ψRE, δRo, φRo), and ultimately enhanced the photosynthetic performance of leaves (PIabs, SFIabs, DFabs). The increased RCs/CSo and Sm contributed to the enhancement of the light reaction activity of strontium-treated leaves. The LC-Sr treatments had no interference with the calcium absorption, and notably enhanced the photosynthetic capacity of Chinese cabbage, shedding light on potential benefits of LC-Sr for crop cultivation.


Assuntos
Brassica , Plântula , Clorofila/metabolismo , Carbono/metabolismo , Fluorescência , Fotossíntese , Clorofila A/metabolismo , Folhas de Planta/metabolismo , Brassica/metabolismo
3.
Plant Physiol Biochem ; 201: 107898, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37482028

RESUMO

DA1/DAR proteins play a crucial role in plant biomass production. However, their functions in woody plants in response to abiotic stress are still unknown. In this study, a total number of six PagDA1/DAR family genes were identified in the poplar genome, and the biological functions of PagDA1a and PagDA1b in the resistance to salt and drought stresses were investigated in transgenic poplar. PagDA1a and PagDA1b were ubiquitously expressed in roots, stems, and leaves, with predominant expression in roots, and were significantly induced by abiotic stress and ABA. Transgenic poplar overexpressing either PagDA1a or PagDA1b showed restrained growth but improved resistance to salt and drought stresses. Further ion content and antioxidant enzyme expression analyses exhibited that transgenic poplar accumulated less sodium (Na+), hydrogen peroxide (H2O2) and malondialdehyde (MDA) in the leaves, accompanied with increased activity of superoxide dismutase (SOD), ascorbate peroxidase (APX) and catalase (CAT), and up-regulated transcription of SOD1, APX1, and CAT2. Our observations demonstrate that PagDA1a and PagDA1b improve salt and drought tolerance through ion homeostasis optimization and ROS scavenging ability enhancement in transgenic poplar, and both can be used for the future genetic breeding of new salt and drought tolerant tree species.


Assuntos
Resistência à Seca , Proteínas de Plantas , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Peróxido de Hidrogênio/metabolismo , Plantas Geneticamente Modificadas/genética , Tolerância ao Sal/genética , Melhoramento Vegetal , Cloreto de Sódio/farmacologia , Estresse Fisiológico/genética , Secas , Regulação da Expressão Gênica de Plantas
4.
J Agric Food Chem ; 71(8): 3766-3776, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36795896

RESUMO

The production of glycyrrhetinic acid (GA) and 11-oxo-ß-amyrin, the major bioactive components in liquorice, was typically inhibited by P450 oxidation in Saccharomyces cerevisiae. This study focused on optimizing CYP88D6 oxidation by balancing its expression with cytochrome P450 oxidoreductase (CPR) for the efficient production of 11-oxo-ß-amyrin in yeast. Results indicated that a high CPR:CYP88D6 expression ratio could decrease both 11-oxo-ß-amyrin concentration and turnover ratio of ß-amyrin to 11-oxo-ß-amyrin, whereas a high CYP88D6:CPR expression ratio is beneficial for improving the catalytic activity of CYP88D6 and 11-oxo-ß-amyrin production. Under such a scenario, 91.2% of ß-amyrin was converted into 11-oxo-ß-amyrin in the resulting S. cerevisiae Y321, and 11-oxo-ß-amyrin production was further improved to 810.6 mg/L in fed-batch fermentation. Our study provides new insights into the expression of cytochrome P450 and CPR in maximizing the catalytic activity of P450s, which could guide the construction of cell factories in producing natural products.


Assuntos
Ácido Oleanólico , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Oxirredução
5.
Zhongguo Zhong Yao Za Zhi ; 47(10): 2614-2622, 2022 May.
Artigo em Chinês | MEDLINE | ID: mdl-35718479

RESUMO

In this study, we used bioinformatic tools to analyze the 3-hydroxy-3-methylglutaryl-CoA reductase(HMGR) genes from Glycyrrhiza uralensis, Artemisia annua, and Arabidopsis thaliana. The results indicated that GuHMGR and AaHMGR contained two transmembrane regions while AtHMGR had three transmembrane regions. GuHMGR, AaHMGR, and AtHMGR all had the active center for catalysis. Three truncated HMGR genes(tHMGRs) of G. uralensi, A. annua, and A. thaliana were respectively ligated to pYES3 vector to construct the recombinant plasmids pYES3-tGuHMGR,pYES3-tAaHMGR,and pYES3-tAtHMGR. Afterwards, the control plasmid pYES3 and the three plasmids and were respectively introduced into Saccharomyces cerevisiae Cen.pk2-1 D, which yielded strains Y0, Y1, Y2, and Y3, respectively. The content of squalene, lanosterol, and ergosterol in these strains was measured by GC-MS. The relative expression of tGuHMGR, tAaHMGR, and tAtHMGR in strains Y1, Y2, and Y3 was determined by quantitative real-time PCR. The results showed that the strain overexpressing tAaHMGR had the highest yield of squalene and the highest total yield of squalene, ergosterol, and lanosterol. The quantitative real-time PCR showed higher relative expression of tAaHMGR than tGuHMGR, consistent with the strain fermentation result. We selected a superior tHMGR by comparing the effects of different tHMGRs on the mevalonate(MVA) pathway flux in S. cerevisiae. The findings can provide a reference for the construction of S. cerevisiae strains with high yields of squalene and terpenoid precursors.


Assuntos
Ácido Mevalônico , Saccharomyces cerevisiae , Ergosterol , Lanosterol , Ácido Mevalônico/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Esqualeno/metabolismo
6.
Zhongguo Zhong Yao Za Zhi ; 45(16): 3819-3825, 2020 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-32893576

RESUMO

In this study, citrate synthase gene(CIT2), and malate synthase gene(MLS1) were successfully knocked out in ß-amyrin-producing yeast cells by using CRISPR/CAS9. The promoter of phosphoglucose isomerase gene(PGI1) was replaced by that of cytochrome c oxidase subunit Ⅶa(Cox9)to weaken its expression, aiming to channel more carbon flux into the NADPH-producing pathway. The fermentation results showed that CIT2 deletion had no effect on the ß-amyrin production. Compared with the control strain, the production of ß-amyrin was increased by 1.85 times after deleting MLS1, reaching into 3.3 mg·L~(-1). By replacing the promoter of PGI1, the ß-amyrin yield was 3.75 times higher than that of the control strain, reaching up to 6.7 mg·L~(-1). This study successfully knocked out the CITT2 and MLS1 genes and weakened the PGI1 gene by using CRISPR/CAS9, which directly influenced the production of ß-amyrin and provided some reference for the the metabolic engineering of triterpernoid producing strain.


Assuntos
Engenharia Metabólica , Saccharomyces cerevisiae/genética , Etanol , Fermentação
7.
Zhongguo Zhong Yao Za Zhi ; 44(7): 1341-1349, 2019 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-31090290

RESUMO

In this study, the synthetic pathway of ß-amyrin was constructed in the pre-constructed Saccharomyces cerevisiae chassis strain Y0 by introducing ß-amyrin synthase from Glycyrrhiza uralensis, resulting strain Y1-C20-6, which successfully produced ß-amyrin up to 5.97 mg·L~(-1). Then, the mevalonate pyrophosphate decarboxylase gene(ERG19), mevalonate kinase gene(ERG12), 3-hydroxy-3-methylglutaryl-CoA synthase gene(ERG13), phosphomevalonate kinase gene(ERG8) and IPP isomerase gene(IDI1)were overexpressed to promoted the metabolic fluxto the direction of ß-amyrin synthesis for further improving ß-amyrin production, resulting the strain Y2-C2-4 which produced ß-amyrin of 10.3 mg·L~(-1)under the shake flask fermentation condition. This is 100% higher than that of strain Y1-C20-6, illustrating the positive effect of the metabolic engineering strategy applied in this study. The titer of ß-amyrin was further improved up to 157.4 mg·L~(-1) in the fed-batch fermentation, which was almost 26 fold of that produced by strain Y1-C20-6. This study not only laid the foundation for the biosynthesis of ß-amyrin but also provided a favorable chassis strain for elucidation of cytochrome oxidases and glycosyltransferases of ß-amyrin-based triterpenoids.


Assuntos
Transferases Intramoleculares/genética , Engenharia Metabólica , Ácido Oleanólico/análogos & derivados , Saccharomyces cerevisiae/metabolismo , Fermentação , Glycyrrhiza uralensis/enzimologia , Glycyrrhiza uralensis/genética , Microbiologia Industrial , Ácido Oleanólico/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...