Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 213(3): 373-383, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38884660

RESUMO

Conventionally, immune responses are studied in the context of inflamed tissues and their corresponding draining lymph nodes (LNs). However, little is known about the effects of systemic inflammatory signals generated during local inflammation on distal tissues and nondraining LNs. Using a mouse model of cutaneous immunization, we found that systemic inflammatory stimuli triggered a rapid and selective distal response in the small intestine and the mesenteric LN (mesLN). This consisted of increased permeability of intestinal blood vessels and lymphatic drainage of bloodborne solutes into the mesLN, enhanced activation and migration of intestinal dendritic cells, as well as amplified T cell responses in the mesLNs to systemic but not orally derived Ags. Mechanistically, we found that the small intestine endothelial cells preferentially expressed molecules involved in TNF-α signaling and that TNF-α blockade markedly diminished distal intestinal responses to cutaneous immunization. Together, these findings reveal that the intestinal immune system is rapidly and selectively activated in response to inflammatory cues regardless of their origin, thus identifying an additional layer of defense and enhanced surveillance of a key barrier organ at constant risk of pathogen encounter.


Assuntos
Imunização , Linfonodos , Animais , Camundongos , Linfonodos/imunologia , Imunização/métodos , Camundongos Endogâmicos C57BL , Citocinas/imunologia , Citocinas/metabolismo , Intestino Delgado/imunologia , Células Dendríticas/imunologia , Inflamação/imunologia , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Linfócitos T/imunologia , Mucosa Intestinal/imunologia
2.
Nat Immunol ; 24(3): 487-500, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36759711

RESUMO

The T cell repertoire of healthy mice and humans harbors self-reactive CD4+ conventional T (Tconv) cells capable of inducing autoimmunity. Using T cell receptor profiling paired with in vivo clonal analysis of T cell differentiation, we identified Tconv cell clones that are recurrently enriched in non-lymphoid organs following ablation of Foxp3+ regulatory T (Treg) cells. A subset of these clones was highly proliferative in the lymphoid organs at steady state and exhibited overt reactivity to self-ligands displayed by dendritic cells, yet were not purged by clonal deletion. These clones spontaneously adopted numerous hallmarks of follicular helper T (TFH) cells, including expression of Bcl6 and PD-1, exhibited an elevated propensity to localize within B cell follicles at steady state, and produced interferon-γ in non-lymphoid organs following sustained Treg cell depletion. Our work identifies a naturally occurring population of self-reactive TFH-like cells and delineates a previously unappreciated fate for self-specific Tconv cells.


Assuntos
Linfócitos T CD4-Positivos , Células T Auxiliares Foliculares , Linfócitos T Reguladores , Animais , Humanos , Camundongos , Autoimunidade , Diferenciação Celular , Células Clonais , Fenótipo , Linfócitos T Auxiliares-Indutores , Linfócitos T CD4-Positivos/imunologia
3.
Cell Rep Med ; 2(9): 100399, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34622236

RESUMO

Immune suppression by CD4+FOXP3+ regulatory T (Treg) cells and tumor infiltration by CD8+ effector T cells represent two major factors impacting response to cancer immunotherapy. Using deconvolution-based transcriptional profiling of human papilloma virus (HPV)-negative oral squamous cell carcinomas (OSCCs) and other solid cancers, we demonstrate that the density of Treg cells does not correlate with that of CD8+ T cells in many tumors, revealing polarized clusters enriched for either CD8+ T cells or CD4+ Treg and conventional T cells. In a mouse model of carcinogen-induced OSCC characterized by CD4+ T cell enrichment, late-stage Treg cell ablation triggers increased densities of both CD4+ and CD8+ effector T cells within oral lesions. Notably, this intervention does not induce tumor regression but instead induces rapid emergence of invasive OSCCs via an effector T cell-dependent process. Thus, induction of a T cell-inflamed phenotype via therapeutic manipulation of Treg cells may trigger unexpected tumor-promoting effects in OSCC.


Assuntos
Carcinoma de Células Escamosas/imunologia , Neoplasias Bucais/imunologia , Linfócitos T Reguladores/imunologia , 4-Nitroquinolina-1-Óxido , Sequência de Aminoácidos , Animais , Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Carcinógenos , Carcinoma de Células Escamosas/patologia , Células Clonais , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Contagem de Linfócitos , Depleção Linfocítica , Camundongos Endogâmicos C57BL , Neoplasias Bucais/patologia , Invasividade Neoplásica , Peptídeos/química , Quinolonas , Linfócitos T Reguladores/efeitos dos fármacos
4.
J Exp Med ; 218(6)2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33914024

RESUMO

For the large array of self-peptide/MHC class II (pMHC-II) complexes displayed in the body, it is unclear whether CD4+ T cell tolerance must be imparted for each individual complex or whether pMHC-II-nonspecific bystander mechanisms are sufficient to confer tolerance by acting broadly on T cells reactive to multiple self-pMHC-II ligands. Here, via reconstitution of T cell-deficient mice, we demonstrate that altered T cell selection on a single prostate-specific self-pMHC-II ligand renders recipient mice susceptible to prostate-specific T cell infiltration. Mechanistically, this self-pMHC-II complex is required for directing antigen-specific cells into the Foxp3+ regulatory T cell lineage but does not induce clonal deletion to a measurable extent. Thus, our data demonstrate that polyclonal T reg cells are unable to functionally compensate for a breach in tolerance to a single self-pMHC-II complex in this setting, revealing vulnerabilities in antigen-nonspecific bystander mechanisms of immune tolerance.


Assuntos
Linfócitos T Reguladores/imunologia , Animais , Antígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Linhagem Celular , Células Dendríticas/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Tolerância Imunológica/imunologia , Insetos , Ligantes , Ativação Linfocitária/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/imunologia
5.
J Immunol ; 200(2): 415-421, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29311383

RESUMO

Regulatory T (Treg) cells are found at elevated densities in many human cancers and are thought to be a major barrier to the generation of robust antitumor T cell responses. In this review, we discuss recent advances in the understanding of tumor-associated Treg cell diversity and function. Emerging evidence indicates that the transcriptional program of Treg cells infiltrating human cancers may represent a composite program blending a tissue-associated expression signature with an additional tumor-specific signature common to Treg cells from multiple cancer types. Studies in mouse models have defined unique molecular pathways required for Treg cell function in the tumor context that can be manipulated to selectively dampen intratumoral Treg cell activity. Finally, an expanding body of work has revealed diverse functions for Treg cells in nonlymphoid tissues that are unrelated to immune suppression, suggesting a need to explore functions of intratumoral Treg cells beyond the regulation of antitumor immunity.


Assuntos
Linfócitos do Interstício Tumoral/imunologia , Neoplasias/imunologia , Linfócitos T Reguladores/imunologia , Animais , Citotoxicidade Imunológica , Humanos , Imunomodulação , Ativação Linfocitária/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Linfócitos T Reguladores/metabolismo , Evasão Tumoral/imunologia , Microambiente Tumoral
6.
Immunity ; 47(1): 107-117.e8, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28709804

RESUMO

Regulatory T (Treg) cells expressing the transcription factor Foxp3 are critical for the prevention of autoimmunity and the suppression of anti-tumor immunity. The major self-antigens recognized by Treg cells remain undefined, representing a substantial barrier to the understanding of immune regulation. Here, we have identified natural Treg cell ligands in mice. We found that two recurrent Treg cell clones, one prevalent in prostate tumors and the other associated with prostatic autoimmune lesions, recognized distinct non-overlapping MHC-class-II-restricted peptides derived from the same prostate-specific protein. Notably, this protein is frequently targeted by autoantibodies in experimental models of prostatic autoimmunity. On the basis of these findings, we propose a model in which Treg cell responses at peripheral sites converge on those self-proteins that are most susceptible to autoimmune attack, and we suggest that this link could be exploited as a generalizable strategy for identifying the Treg cell antigens relevant to human autoimmunity.


Assuntos
Autoantígenos/metabolismo , Epitopos de Linfócito T/metabolismo , Neoplasias da Próstata/imunologia , Linfócitos T Reguladores/imunologia , Timo/fisiologia , Animais , Autoanticorpos/metabolismo , Autoantígenos/genética , Autoantígenos/imunologia , Diferenciação Celular , Células Clonais , Mapeamento de Epitopos , Fatores de Transcrição Forkhead/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Ativação Linfocitária , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...