Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Phys ; 90(3)2022.
Artigo em Inglês | MEDLINE | ID: mdl-36619177

RESUMO

The dynamics of a swinging payload suspended from a stationary crane, an unwanted phenomenon on a construction site, can be described as a simple pendulum. However, an experienced crane operator can deliver a swinging payload and have it stop dead on target in a finite amount of time by carefully modulating the speed of the trolley. Generally, a series of precisely timed stop and go movements of the trolley are implemented to damp out the kinetic energy of the simple harmonic oscillator. Here, this mysterious crane operator's trick will be revealed and ultimately generalized to capture the case where the load is initially swinging. Finally, this modus operandi is applied to a torsion balance used to measure G, the universal gravitational constant responsible for the swinging of the crane's payload in the first place.

2.
Sci Rep ; 11(1): 1048, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441722

RESUMO

Employing very simple electro-mechanical principles known from classical physics, the Kibble balance establishes a very precise and absolute link between quantum electrical standards and macroscopic mass or force measurements. The success of the Kibble balance, in both determining fundamental constants (h, [Formula: see text], e) and realizing a quasi-quantum mass in the 2019 newly revised International System of Units, relies on the perfection of Maxwell's equations and the symmetry they describe between Lorentz's force and Faraday's induction, a principle and a symmetry stunningly demonstrated in the weighing and velocity modes of Kibble balances to within [Formula: see text], with nothing but imperfect wires and magnets. However, recent advances in the understanding of the current effect in Kibble balances reveal a troubling paradox. A diamagnetic effect, a force that does not cancel between mass-on and mass-off measurement, is challenging balance maker's assumptions of symmetry at levels that are almost two orders of magnitude larger than the reported uncertainties. The diamagnetic effect, if it exists, shows up in weighing mode without a readily apparent reciprocal effect in the velocity mode, begging questions about systematic errors at the very foundation of the new measurement system. The hypothetical force is caused by the coil current changing the magnetic field, producing an unaccounted force that is systematically modulated with the weighing current. Here we show that this diamagnetic force exists, but the additional force does not change the equivalence between weighing and velocity measurements. We reveal the unexpected way that symmetry is preserved and show that for typical materials and geometries the total relative effect on the measurement is [Formula: see text].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...