Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Colloids Surf B Biointerfaces ; 220: 112904, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36265317

RESUMO

The interactions between proteins and materials, in particular lipid bilayers, have been studied extensively for their relevance in diseases and for the formulation of protein-based therapeutics and vaccines. However, the precise rules by which material properties induce favorable or unfavorable structural states in biomolecules are incompletely understood, and as a result, the rational design of materials remains challenging. Here, we investigated the influence of lipid bilayers (in the form of small unilamellar vesicles) on the formation of insulin amyloid fibrils using a fibril-specific assay (thioflavin T), polyacrylamide gel electrophoresis, and circular dichroism spectroscopy. Lipid bilayers composed of equal mixtures of cationic and anionic lipids effectively inhibited fibril formation and stabilized insulin in its native conformation. However, other lipid bilayer compositions failed to inhibit fibril formation or even destabilized insulin, exacerbating fibrilization and/or non-amyloid aggregation. Our findings suggest that electrostatic interactions with lipid bilayers can play a critical role in stabilizing or destabilizing insulin, and preventing the conversion of insulin to its amyloidogenic, disease-associated state.


Assuntos
Bicamadas Lipídicas , Fosfolipídeos , Fosfolipídeos/química , Bicamadas Lipídicas/química , Insulina , Amiloide/metabolismo
2.
J Am Chem Soc ; 143(18): 7154-7163, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33914511

RESUMO

During integration into materials, the inactivation of enzymes as a result of their interaction with nanometer size denaturing "hotspots" on surfaces represents a critical challenge. This challenge, which has received far less attention than improving the long-term stability of enzymes, may be overcome by limiting the exploration of surfaces by enzymes. One way this may be accomplished is through increasing the rate constant of the surface ligation reaction and thus the probability of immobilization with reactive surface sites (i.e., ligation efficiency). Here, the connection between ligation reaction efficiency and the retention of enzyme structure and activity was investigated by leveraging the extremely fast reaction of strained trans-cyclooctene (sTCOs) and tetrazines (Tet). Remarkably, upon immobilization via Tet-sTCO chemistry, carbonic anhydrase (CA) retained 77% of its solution-phase activity, while immobilization via less efficient reaction chemistries, such as thiol-maleimide and azide-dibenzocyclooctyne, led to activity retention of only 46% and 27%, respectively. Dynamic single-molecule fluorescence tracking methods further revealed that longer surface search distances prior to immobilization (>0.5 µm) dramatically increased the probability of CA unfolding. Notably, the CA distance to immobilization was significantly reduced through the use of Tet-sTCO chemistry, which correlated with the increased retention of structure and activity of immobilized CA compared to the use of slower ligation chemistries. These findings provide an unprecedented insight into the role of ligation reaction efficiency in mediating the exploration of denaturing hotspots on surfaces by enzymes, which, in turn, may have major ramifications in the creation of functional biohybrid materials.


Assuntos
Anidrase Carbônica II/química , Anidrase Carbônica II/metabolismo , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Humanos , Conformação Proteica , Desdobramento de Proteína , Propriedades de Superfície
3.
J Phys Chem Lett ; 11(17): 7417-7422, 2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32803986

RESUMO

While many approaches to reduce fibrillation of amyloid-ß (Aß) have been aimed at slowing fibril formation, the degradation of fibrils remains challenging. We provide insight into fibril degradation as well as the inhibition of fiber formation by lipid vesicles composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine and 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol). In the presence of vesicles with the optimal lipid composition, fibril formation was inhibited up to 76%. Additionally, by tuning the lipid composition, mature fibril content decreased up to 74% and the ß-sheet content of Aß was significantly reduced. The reduction in fibril and ß-sheet content was consistent with a decrease in fibril diameter and could be attributed to the chaperone-like activity of the mixed vesicles. While demonstrating this remarkable activity, our findings present new evidence that lipid composition has a significant effect on the strength of the interaction between lipid bilayers and Aß peptides/fibrils. This understanding has intriguing therapeutic implications in treating protein misfolding diseases.


Assuntos
Amiloide/química , Fosfolipídeos/química , Fosfolipídeos/farmacologia , Agregados Proteicos/efeitos dos fármacos , Catálise , Glicerol/química , Modelos Moleculares , Fosforilcolina/química , Conformação Proteica em Folha beta
4.
ACS Appl Mater Interfaces ; 12(20): 22640-22649, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32352745

RESUMO

Polyelectrolyte multilayers (PEMs) are attractive materials for immobilizing enzymes due to their unique ionic environment, which can prevent unfolding. Here, we demonstrated that the stability to dry storage and elevated pH were significantly enhanced when negatively charged nitroreductase (NfsB) was embedded in a PEM by depositing alternating layers of the enzyme and polycation (PC) onto porous silica particles. The PC strength (i.e., pKa) and the surface charge of the film were varied to probe the effects that internal and surface chemistry had on the pH stability of the entrapped NfsB. All films showed enhanced activity retention at elevated pH (>6), and inactivation at reduced pH (<6) similar to NfsB in solution, indicating that the primary stabilizing effect of immobilization was achieved through ionic interactions between NfsB and the PC and not through changes to the surface charge of the NfsB. Additionally, films that were stored dry at 4 °C for 1 month retained full activity, while those stored at room temperature lost 30% activity. Remarkably, at 50 °C, above the NfsB melting temperature, 40% activity was retained after 1 month of dry storage. Our results suggest that internal film properties are significantly more important than surface charge, which had minor effects on activity. Specifically, immobilization with the weak PC, poly(l-lysine), increased the optimal pH and the activity of immobilized NfsB (which we attribute to greater permeability), relative to immobilization with the strong PC, poly(diallyldimethylammonium chloride). However, NfsB was leached from the PLL film to a greater extent. Overall, these observations demonstrate that internal ionic cross-linking is key to the stabilizing effects of PEMs and that the pH response can be tuned by controlling the number of cross-links (e.g., by changing the strength of the PC). However, this may be at the cost of reduced loading, illustrating the necessity of simultaneously optimizing enzyme loading, internal ionic cross-linking, and substrate transport.


Assuntos
Enzimas Imobilizadas/química , Proteínas de Escherichia coli/química , Nitrorredutases/química , Polieletrólitos/química , Polietilenos/química , Polilisina/química , Compostos de Amônio Quaternário/química , Estabilidade Enzimática , Escherichia coli/enzimologia , Concentração de Íons de Hidrogênio
5.
J Phys Chem Lett ; 10(11): 2641-2647, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31067058

RESUMO

In this Letter, we report that surface-bound nanobubbles reduce protein denaturation on methylated glass by irreversible protein shell formation. Single-molecule total internal reflection fluorescence (SM-TIRF) microscopy was combined with intramolecular Förster resonance energy transfer (FRET) to study the conformational dynamics of nitroreductase (NfsB) on nanobubble-laden methylated glass surfaces, using reflection brightfield microscopy to register nanobubble locations with NfsB adsorption. First, NfsB adsorbed irreversibly to nanobubbles with no apparent desorption after 5 h. Moreover, virtually all (96%) of the NfsB molecules that interacted with nanobubbles remained folded, whereas less than 50% of NfsB molecules remained folded in the absence of nanobubbles on unmodified silica or methylated glass surfaces. This trend was confirmed by ensemble-average fluorometer TIRF experiments. We hypothesize that nanobubbles reduce protein damage by passivating strongly denaturing topographical surface defects. Thus, nanobubble stabilization on surfaces may have important implications for antifouling surfaces and improving therapeutic protein storage.


Assuntos
Nanoestruturas/química , Nitrorredutases/química , Adsorção , Transferência Ressonante de Energia de Fluorescência , Vidro/química , Conformação Proteica , Desnaturação Proteica , Dióxido de Silício/química , Propriedades de Superfície
6.
ACS Appl Mater Interfaces ; 10(23): 19504-19513, 2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29767959

RESUMO

Biomimetic lipid bilayers represent intriguing materials for enzyme immobilization, which is critical for many biotechnological applications. Here, through the creation of mixed lipid bilayers, the retention of immobilized enzyme structures and catalytic activity are dramatically enhanced. The enhancement in the retention of enzyme structures, which correlated with an increase in enzyme activity, is observed using dynamic single-molecule (SM) fluorescence methods. The results of SM analysis specifically show that lipid bilayers composed of mixtures of 1,2-dioleoyl- sn-glycero-3-phosphocholine (DOPC) and 1,2-dioleoyl- sn-glycero-3-phospho-(1'- rac-glycerol) (DOPG) stabilize the folded state of nitroreductase (NfsB), increasing the rate of refolding relative to unfolding of enzyme molecules on the bilayer surface. Remarkably, for optimal compositions with 15-50% DOPG, over 95% of NfsB remains folded while the activity of the enzyme is increased as much as 2 times over that in solution. Within this range of DOPG, the strength of the interaction of folded and unfolded NfsB with the bilayer surface was also significantly altered, which was evident by the change in the diffusion of folded and unfolded NfsB in the bilayer. Ultimately, these findings provide direct evidence for the chaperone-like activity of mixed DOPG/DOPC lipid bilayers, which can be controlled by tuning the fraction of DOPG in the bilayer.


Assuntos
Enzimas Imobilizadas/metabolismo , Difusão , Bicamadas Lipídicas , Fosfatidilcolinas , Ligação Proteica , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...