Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Neural Netw Learn Syst ; 34(4): 1666-1680, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33119513

RESUMO

Models for predicting the time of a future event are crucial for risk assessment, across a diverse range of applications. Existing time-to-event (survival) models have focused primarily on preserving pairwise ordering of estimated event times (i.e., relative risk). We propose neural time-to-event models that account for calibration and uncertainty while predicting accurate absolute event times. Specifically, an adversarial nonparametric model is introduced for estimating matched time-to-event distributions for probabilistically concentrated and accurate predictions. We also consider replacing the discriminator of the adversarial nonparametric model with a survival-function matching estimator that accounts for model calibration. The proposed estimator can be used as a means of estimating and comparing conditional survival distributions while accounting for the predictive uncertainty of probabilistic models. Extensive experiments show that the distribution matching methods outperform existing approaches in terms of both calibration and concentration of time-to-event distributions.

2.
Proc Mach Learn Res ; 80: 735-744, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33834174

RESUMO

Modern health data science applications leverage abundant molecular and electronic health data, providing opportunities for machine learning to build statistical models to support clinical practice. Time-to-event analysis, also called survival analysis, stands as one of the most representative examples of such statistical models. We present a deep-network-based approach that leverages adversarial learning to address a key challenge in modern time-to-event modeling: nonparametric estimation of event-time distributions. We also introduce a principled cost function to exploit information from censored events (events that occur subsequent to the observation window). Unlike most time-to-event models, we focus on the estimation of time-to-event distributions, rather than time ordering. We validate our model on both benchmark and real datasets, demonstrating that the proposed formulation yields significant performance gains relative to a parametric alternative, which we also propose.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...