Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Expo Sci Environ Epidemiol ; 27(2): 141-151, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-26883476

RESUMO

In the event of an indoor release of an environmentally persistent microbial pathogen such as Bacillus anthracis, the potential for human exposure will be considered when remedial decisions are made. Microbial site characterization and clearance sampling data collected in the field might be used to estimate exposure. However, there are many challenges associated with estimating environmental concentrations of B. anthracis or other spore-forming organisms after such an event before being able to estimate exposure. These challenges include: (1) collecting environmental field samples that are adequate for the intended purpose, (2) conducting laboratory analyses and selecting the reporting format needed for the laboratory data, and (3) analyzing and interpreting the data using appropriate statistical techniques. This paper summarizes some key challenges faced in collecting, analyzing, and interpreting microbial field data from a contaminated site. Although the paper was written with considerations for B. anthracis contamination, it may also be applicable to other bacterial agents. It explores the implications and limitations of using field data for determining environmental concentrations both before and after decontamination. Several findings were of interest. First, to date, the only validated surface/sampling device combinations are swabs and sponge-sticks on stainless steel surfaces, thus limiting availability of quantitative analytical results which could be used for statistical analysis. Second, agreement needs to be reached with the analytical laboratory on the definition of the countable range and on reporting of data below the limit of quantitation. Finally, the distribution of the microbial field data and statistical methods needed for a particular data set could vary depending on these data that were collected, and guidance is needed on appropriate statistical software for handling microbial data. Further, research is needed to develop better methods to estimate human exposure from pathogens using environmental data collected from a field setting.


Assuntos
Bacillus anthracis/isolamento & purificação , Interpretação Estatística de Dados , Exposição Ambiental/análise , Técnicas Microbiológicas , Manejo de Espécimes , Bioterrorismo , Monitoramento Ambiental , Recuperação e Remediação Ambiental/métodos , Humanos , Técnicas Microbiológicas/métodos , Técnicas Microbiológicas/normas , Controle de Qualidade , Manejo de Espécimes/métodos , Manejo de Espécimes/normas , Esporos Bacterianos/isolamento & purificação
2.
Water Res ; 56: 203-13, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24681377

RESUMO

The Legionella species have been identified as important waterborne pathogens in terms of disease morbidity and mortality. Microbial exposure assessment is a tool that can be utilized to assess the potential of Legionella species inhalation exposure from common water uses. The screening-level exposure assessment presented in this paper developed emission factors to model aerosolization, quantitatively assessed inhalation exposures of aerosolized Legionella species or Legionella species surrogates while evaluating two generalized levels of assumed water concentrations, and developed a relative ranking of six common in-home uses of water for potential Legionella species inhalation exposure. Considerable variability in the calculated exposure dose was identified between the six identified exposure pathways, with the doses differing by over five orders of magnitude in each of the evaluated exposure scenarios. The assessment of exposure pathways that have been epidemiologically associated with legionellosis transmission (ultrasonic and cool mist humidifiers) produced higher estimated inhalation exposure doses than pathways where epidemiological evidence of transmission has been less strong (faucet and shower) or absent (toilets and therapy pool). With consideration of the large uncertainties inherent in the exposure assessment process used, a relative ranking of exposure pathways from highest to lowest exposure doses was produced using culture-based measurement data and the assumption of constant water concentration across exposure pathways. In this ranking, the ultrasonic and cool mist humidifier exposure pathways were estimated to produce the highest exposure doses, followed by the shower and faucet exposure pathways, and then the toilet and therapy pool exposure pathways.


Assuntos
Exposição por Inalação , Legionella/classificação , Legionella/fisiologia , Microbiologia da Água , Aerossóis , Humanos , Fatores de Risco , Abastecimento de Água
3.
Environ Sci Technol ; 44(19): 7515-20, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20815380

RESUMO

Human cases of disease caused by highly pathogenic avian influenza (HPAI) viruses of the H5N1 subtype are rare, yet characterized with a mortality rate of approximately 60%. Tests were conducted to determine the environmental persistence of an HPAI (H5N1) virus on four materials (glass, wood, galvanized metal, and topsoil) that could act as fomites or harbor the virus. Test coupons were inoculated with the virus and exposed to one of five environmental conditions that included changes in temperature, relative humidity, and simulated sunlight. At time periods up to 13 days, the virus was extracted from each coupon, and quantified via cytopathic effects on Madin-Darby canine kidney cells. The virus was most persistent under the low temperature condition, with less than 1 log reduction on glass and steel after 13 days at low relative humidity. Thus, at these conditions, the virus would be expected to persist appreciably beyond 13 days.


Assuntos
Virus da Influenza A Subtipo H5N1/isolamento & purificação , Animais , Linhagem Celular , Cães , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...