Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(10): 107777, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37720101

RESUMO

The transcription factor NRF1 resides in the endoplasmic reticulum (ER) and is constantly transported to the cytosol for proteasomal degradation. However, when the proteasome is defective, NRF1 escapes degradation and undergoes proteolytic cleavage by the protease DDI2, generating a transcriptionally active form that restores proteostasis, including proteasome function. The mechanisms that regulate NRF1 proteolytic activation and transcriptional potential remain poorly understood. This study demonstrates that the ER is a crucial regulator of NRF1 function by orchestrating its ubiquitination through the E3 ubiquitin ligase HRD1. We show that HRD1-mediated NRF1 ubiquitination is necessary for DDI2-mediated processing in cells. Furthermore, we found that deficiency in both RAD23A and RAD23B impaired DDI2-mediated NRF1 processing, indicating that these genes are essential components of the DDI2 proteolytic machinery. Our findings highlight the intricate mechanism by which the ER activates NRF1 to coordinate the transcriptional activity of an adaptation response in cells.

2.
Cell Rep ; 41(7): 111636, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36384121

RESUMO

The PYRIN inflammasome pathway is part of the innate immune response against invading pathogens. Unprovoked continuous activation of the PYRIN inflammasome drives autoinflammation and underlies several autoinflammatory diseases, including familial Mediterranean fever (FMF) syndrome. PYRIN inflammasome formation requires PYRIN dephosphorylation and oligomerization by molecular mechanisms that are poorly understood. Here, we use a functional genetics approach to find regulators of PYRIN inflammasome function. We identify the small Rho GTPase CDC42 to be essential for PYRIN activity and oligomerization of the inflammasome complex. While CDC42 catalytic activity enhances PYRIN phosphorylation, thereby inhibiting it, the inflammasome-supportive role of CDC42 is independent of its GDP/GTP binding or hydrolysis capacity and does not affect PYRIN dephosphorylation. These findings identify the dual role of CDC42 as a regulator of PYRIN and as a critical player required for PYRIN inflammasome assembly in health and disease.


Assuntos
Imunidade Inata , Inflamassomos , Pirina/metabolismo , Inflamassomos/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...