Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Sci (Paris) ; 40(1): 88-91, 2024 01.
Artigo em Francês | MEDLINE | ID: mdl-38299909

RESUMO

Title: Régénération des tissus dentaires de soutien - Quels biomatériaux, quelles perspectives ? Abstract: Après avoir évoqué l'avenir des biomatériaux de réparation des tissus dentaires calcifiés (émail et dentine) en essayant d'être biomimétique et même de stimuler aux interfaces la régénération dentinaire1, nous évoquons dans cet article l'avenir des biomatériaux utilisés pour régénérer les tissus de soutien de la dent, le parodonte qui inclut l'os alvéolaire.


Assuntos
Materiais Biocompatíveis , Engenharia Tecidual , Humanos , Células-Tronco
2.
J Surg Res ; 288: 298-308, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37058986

RESUMO

INTRODUCTION: Recent microsurgical reconstruction techniques benefit from the use of skin and perforator flaps that spare the donor sites. Studies on these skin flaps in rat models are numerous but there is currently no reference regarding the position of the perforators, their caliber, and the length of the vascular pedicles. METHODS: We performed an anatomical study on 10 Wistar rats and 140 vessels: cranial epigastric (CE), superficial inferior epigastric (SIE), lateral thoracic (LT), posterior thigh (PT), deep iliac circumflex (DCI) and posterior intercostal (PIC) vessels. The evaluation criteria were the external caliber, the length of the pedicle, and the position of the vessels reported on the skin surface. RESULTS: Data from the six perforator vascular pedicles are reported, with figures illustrating the orthonormal reference frame, the representation of the vessel's position, the cloud of points corresponding to the various measurements, and the average representation of the collected data. The analysis of the literature does not find similar studies; the different vascular pedicles are discussed as well as the limitations of our study: evaluation of cadaver specimen, presence of the very mobile panniculus carnosus, other perforator vessels not evaluated as well as the precise definition of perforating vessels. CONCLUSIONS: Our work describes the vascular calibers, pedicle lengths, and location of birth and arrival at the skin of the perforator vessels PT, DCI, PIC, LT, SIE, and CE in rat animal models. This work, without an equivalent in the literature, lays the foundation for future studies about flap perfusion, microsurgery, and super microsurgery learning.


Assuntos
Retalho Perfurante , Retalhos Cirúrgicos , Ratos , Animais , Ratos Wistar , Retalhos Cirúrgicos/irrigação sanguínea , Pele , Cadáver , Microcirurgia/métodos , Retalho Perfurante/irrigação sanguínea
3.
J Funct Biomater ; 14(2)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36826904

RESUMO

Augmenting the vascular supply to generate new tissues, a crucial aspect in regenerative medicine, has been challenging. Recently, our group showed that calcium phosphate can induce the formation of a functional neo-angiosome without the need for microsurgical arterial anastomosis. This was a preclinical proof of concept for biomaterial-induced luminal sprouting of large-diameter vessels. In this study, we investigated if sprouting was a general response to surgical injury or placement of an inorganic construct around the vessel. Cylindrical biocement scaffolds of differing chemistries were placed around the femoral vein. A contrast agent was used to visualize vessel ingrowth into the scaffolds. Cell populations in the scaffold were mapped using immunohistochemistry. Calcium phosphate scaffolds induced 2.7-3 times greater volume of blood vessels than calcium sulphate or magnesium phosphate scaffolds. Macrophage and vSMC populations were identified that changed spatially and temporally within the scaffold during implantation. NLRP3 inflammasome activation peaked at weeks 2 and 4 and then declined; however, IL-1ß expression was sustained over the course of the experiment. IL-8, a promoter of angiogenesis, was also detected, and together, these responses suggest a role of sterile inflammation. Unexpectedly, the effect was distinct from an injury response as a result of surgical placement and also was not simply a foreign body reaction as a result of placing a rigid bioceramic next to a vein, since, while the materials tested had similar microstructures, only the calcium phosphates tested elicited an angiogenic response. This finding then reveals a potential path towards a new strategy for creating better pro-regenerative biomaterials.

4.
Acta Biomater ; 154: 626-640, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36210043

RESUMO

The reconstruction of massive segmental mandibular bone defects (SMDs) remains challenging even today; the current gold standard in human clinics being vascularized bone transplantation (VBT). As alternative to this onerous approach, bone tissue engineering strategies have been widely investigated. However, they displayed limited clinical success, particularly in failing to address the essential problem of quick vascularization of the implant. Although routinely used in clinics, the insertion of intrinsic vascularization in bioengineered constructs for the rapid formation of a feeding angiosome remains uncommon. In a clinically relevant model (sheep), a custom calcium phosphate-based bioceramic soaked with autologous bone marrow and perfused by an arteriovenous loop was tested to regenerate a massive SMD and was compared to VBT (clinical standard). Animals did not support well the VBT treatment, and the study was aborted 2 weeks after surgery due to ethical and animal welfare considerations. SMD regeneration was successful with the custom vascularized bone construct. Implants were well osseointegrated and vascularized after only 3 months of implantation and totally entrapped in lamellar bone after 12 months; a healthy yellow bone marrow filled the remaining space. STATEMENT OF SIGNIFICANCE: Regenerative medicine struggles with the generation of large functional bone volume. Among them segmental mandibular defects are particularly challenging to restore. The standard of care, based on bone free flaps, still displays ethical and technical drawbacks (e.g., donor site morbidity). Modern engineering technologies (e.g., 3D printing, digital chain) were combined to relevant surgical techniques to provide a pre-clinical proof of concept, investigating for the benefits of such a strategy in bone-related regenerative field. Results proved that a synthetic-biologics-free approach is able to regenerate a critical size segmental mandibular defect of 15 cm3 in a relevant preclinical model, mimicking real life scenarii of segmental mandibular defect, with a full physiological regeneration of the defect after 12 months.


Assuntos
Fosfatos de Cálcio , Engenharia Tecidual , Humanos , Ovinos , Animais , Engenharia Tecidual/métodos , Fosfatos de Cálcio/farmacologia , Mandíbula/cirurgia , Alicerces Teciduais
5.
Anal Chem ; 94(23): 8120-8125, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35648814

RESUMO

The development of instruments combining multiple characterization and imaging tools drove huge advances in material science, engineering, biology, and other related fields. Notably, the coupling of SEM with micro-Raman spectrometry (µRaman) provides the means for the correlation between structural and physicochemical properties at the surface, while dual focused ion beam (FIB)-scanning electron microscopes (SEMs) operating under cryogenic conditions (cryo-FIB-SEM) allow for the analysis of the ultrastructure of materials in situ and in their native environment. In cryo-FIB-SEM, rapid and efficient methods for assessing vitrification conditions in situ are required for the accurate investigation of the original structure of hydrated samples. This work reports for the first time the use of a cryo-FIB-SEM-µRaman instrument to efficiently assess the accuracy of cryo-fixation methods. Analyses were performed on plunge-freezed highly hydrated calcium phosphate cement (CPC) and a gelatin composite. By making a trench of a defined thickness with FIB, µRaman analyses were carried out at a specific depth within the frozen material. Results show that the µRaman signal is sensitive to the changes in the molecular structures of the aqueous phase and can be used to examine the depth of vitreous ice in frozen samples. The method presented in this work provides a reliable way to avoid imaging artifacts in cryo-FIB-SEM that are related to cryo-fixation and therefore constitutes great interest in the study of vitreous materials exhibiting high water content, regardless of the sample preparation method (i.e., by HPF, plunge freezing, and so on).


Assuntos
Criopreservação , Gelo , Microscopia Crioeletrônica/métodos , Congelamento , Água
6.
Acta Biomater ; 136: 37-55, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34626818

RESUMO

Massive segmental bone defects (SBD) are mostly treated by removing the fibula and transplanting it complete with blood supply. While revolutionary 50 years ago, this remains the standard treatment. This review considers different strategies to repair SBD and emerging potential replacements for this highly invasive procedure. Prior to the technical breakthrough of microsurgery, researchers in the 1960s and 1970s had begun to make considerable progress in developing non autologous routes to repairing SBD. While the breaktthrough of vascularised bone transplantation solved the immediate problem of a lack of reliable repair strategies, much of their prior work is still relevant today. We challenge the assumption that mimicry is necessary or likely to be successful and instead point to the utility of quite crude (from a materials technology perspective), approaches. Together there are quite compelling indications that the body can regenerate entire bone segments with few or no exogenous factors. This is important, as there is a limit to how expensive a bone repair can be and still be widely available to all patients since cost restraints within healthcare systems are not likely to diminish in the near future. STATEMENT OF SIGNIFICANCE: This review is significant because it is a multidisciplinary view of several surgeons and scientists as to what is driving improvement in segmental bone defect repair, why many approaches to date have not succeeded and why some quite basic approaches can be as effective as they are. While there are many reviews of the literature of grafting and bone repair the relative lack of substantial improvement and slow rate of progress in clinical translation is often overlooked and we seek to challenge the reader to consider the issue more broadly.


Assuntos
Fíbula , Procedimentos de Cirurgia Plástica , Regeneração Óssea , Transplante Ósseo , Humanos
7.
Acta Biomater ; 121: 1-28, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33271354

RESUMO

For the past 20 years, the democratization of additive manufacturing (AM) technologies has made many of us dream of: low cost, waste-free, and on-demand production of functional parts; fully customized tools; designs limited by imagination only, etc. As every patient is unique, the potential of AM for the medical field is thought to be considerable: AM would allow the division of dedicated patient-specific healthcare solutions entirely adapted to the patients' clinical needs. Pertinently, this review offers an extensive overview of bone-related clinical applications of AM and ongoing research trends, from 3D anatomical models for patient and student education to ephemeral structures supporting and promoting bone regeneration. Today, AM has undoubtably improved patient care and should facilitate many more improvements in the near future. However, despite extensive research, AM-based strategies for bone regeneration remain the only bone-related field without compelling clinical proof of concept to date. This may be due to a lack of understanding of the biological mechanisms guiding and promoting bone formation and due to the traditional top-down strategies devised to solve clinical issues. Indeed, the integrated holistic approach recommended for the design of regenerative systems (i.e., fixation systems and scaffolds) has remained at the conceptual state. Challenged by these issues, a slower but incremental research dynamic has occurred for the last few years, and recent progress suggests notable improvement in the years to come, with in view the development of safe, robust and standardized patient-specific clinical solutions for the regeneration of large bone defects.


Assuntos
Regeneração Óssea , Osso e Ossos , Humanos
8.
Acta Biomater ; 109: 254-266, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32194263

RESUMO

The architectural features of synthetic bone grafts are key parameters for regulating cell functions and tissue formation for the successful repair of bone defects. In this regard, macroporous structures based on triply-periodic minimal surfaces (TPMS) are considered to have untapped potential. In the present study, custom-made implants based on a gyroid structure, with (GPRC) and without (GP) a cortical-like reinforcement, were specifically designed to fit an intended bone defect in rat femurs. Sintered hydroxyapatite implants were produced using a dedicated additive manufacturing technology and their morphological, physico-chemical and mechanical features were characterized. The implants' integrity and ability to support bone ingrowth were assessed after 4, 6 and 8 weeks of implantation in a 3-mm-long, femoral defect in Lewis rats. GP and GPRC implants were manufactured with comparable macro- to nano-architectures. Cortical-like reinforcement significantly improved implant effective stiffness and resistance to fracture after implantation. This cortical-like reinforcement also concentrated new bone formation in the core of the GPRC implants, without affecting newly formed bone quantity or maturity. This study showed, for the first time, that custom-made TPMS-based bioceramic implants could be produced and successfully implanted in load-bearing sites. Adding a cortical-like reinforcement (GPRC implants) was a relevant solution to improve implant mechanical resistance, and changed osteogenic mechanism compared to the GP implants. STATEMENT OF SIGNIFICANCE: Architectural features are known to be key parameters for successful bone repair using synthetic bioceramic bone graft. So far, conventional manufacturing techniques, lacking reproducibility and complete control of the implant macro-architecture, impeded the exploration of complex architectures, such as triply periodic minimal surfaces (TPMS), which are foreseen to have an unrivaled potential for bone repair. Using a new additive manufacturing process, macroporous TPMS-based bioceramics implants were produced in calcium phosphate, characterized and implanted in a femoral defect in rats. The results showed, for the first time, that such macroporous implants can be successfully implanted in anatomical load-bearing sites when a cortical-like outer shell is added. This outer shell also concentrated new bone formation in the implant center, without affecting new bone quantity or maturity.


Assuntos
Osso e Ossos/fisiologia , Cerâmica/química , Durapatita/química , Próteses e Implantes , Animais , Força Compressiva , Feminino , Teste de Materiais , Osseointegração/fisiologia , Osteogênese/fisiologia , Porosidade , Ratos Endogâmicos Lew
9.
ACS Biomater Sci Eng ; 6(1): 553-563, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-32158932

RESUMO

Finding alternative strategies for the regeneration of craniofacial bone defects (CSD), such as combining a synthetic ephemeral calcium phosphate (CaP) implant and/or active substances and cells, would contribute to solving this reconstructive roadblock. However, CaP's architectural features (i.e., architecture and composition) still need to be tailored, and the use of processed stem cells and synthetic active substances (e.g., recombinant human bone morphogenetic protein 2) drastically limits the clinical application of such approaches. Focusing on solutions that are directly transposable to the clinical setting, biphasic calcium phosphate (BCP) and carbonated hydroxyapatite (CHA) 3D-printed disks with a triply periodic minimal structure (TPMS) were implanted in calvarial critical-sized defects (rat model) with or without addition of total bone marrow (TBM). Bone regeneration within the defect was evaluated, and the outcomes were compared to a standard-care procedure based on BCP granules soaked with TBM (positive control). After 7 weeks, de novo bone formation was significantly greater in the CHA disks + TBM group than in the positive controls (3.33 mm3 and 2.15 mm3, respectively, P=0.04). These encouraging results indicate that both CHA and TPMS architectures are potentially advantageous in the repair of CSDs and that this one-step procedure warrants further clinical investigation.


Assuntos
Regeneração Óssea , Fosfatos de Cálcio , Animais , Osso e Ossos , Osteogênese , Impressão Tridimensional , Ratos
11.
Adv Sci (Weinh) ; 6(17): 1900844, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31508287

RESUMO

The development of alternatives to vascular bone grafts, the current clinical standard for the surgical repair of large segmental bone defects still today represents an unmet medical need. The subcutaneous formation of transplantable bone has been successfully achieved in scaffolds axially perfused by an arteriovenous loop (AVL) and seeded with bone marrow stromal cells or loaded with inductive proteins. Although demonstrating clinical potential, AVL-based approaches involve complex microsurgical techniques and thus are not in widespread use. In this study, 3D-printed microporous bioceramics, loaded with autologous total bone marrow obtained by needle aspiration, are placed around and next to an unoperated femoral vein for 8 weeks to assess the effect of a central flow-through vein on bone formation from marrow in a subcutaneous site. A greater volume of new bone tissue is observed in scaffolds perfused by a central vein compared with the nonperfused negative control. These analyses are confirmed and supplemented by calcified and decalcified histology. This is highly significant as it indicates that transplantable vascularized bone can be grown using dispensable vein and marrow tissue only. This is the first report illustrating the capacity of an intrinsic vascularization by a single vein to support ectopic bone formation from untreated marrow.

12.
Adv Healthc Mater ; 8(18): e1900722, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31414583

RESUMO

The local environment and the defect features have made the skull one of the most difficult regions to repair. Finding alternative strategies to repair large cranial defects, thereby avoiding the current limitations of autograft or polymeric and ceramic prostheses constitute an unmet need. In this study, the regeneration of an 8 mm critical-sized calvarial defect treated by autograft or by a monetite scaffold directly placed in the defect or preimplanted (either cranial bone transplant or subcutaneous pocket) and then transplanted within the bone defect is compared. The data reveal that transplantation of preimplanted monetite transplant scaffolds greatly improves the skull vault closure compared to subcutaneously preimplanted or directly placed materials. Autografts, while clearly filling the defect volume with bone appear effective since bone volume inside the defect volume is obviously high, but are not well fused to the skull. The preimplantation site has a large influence on the regeneration of the defect. Transplantation of induced bone inside materials has the potential to reduce the need for autograft harvest without damaging the skeleton. This first demonstration indicates that cranial repair may be possible without recourse to bioactives or cultured cell therapies.


Assuntos
Transplante Ósseo , Implantes Experimentais , Crânio/patologia , Animais , Imageamento Tridimensional , Masculino , Ratos Wistar , Crânio/diagnóstico por imagem , Tela Subcutânea/transplante , Microtomografia por Raio-X
13.
Acta Biomater ; 53: 536-548, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28254365

RESUMO

While the impact of substrate topographies at nano- and microscale on bone cell behavior has been particularly well documented, very few studies have analyzed the role of substrate closure at a tissular level. Moreover, these have focused on matrix deposition rather than on osteoblastic differentiation. In the present work, mouse calvaria cells were grown for 15days on hydroxyapatite (HA) ceramics textured with three different macrogrooves shapes (**100µm): 1 sine and 2 triangle waveforms. We found that macrotopography favors cell attachment, and that bone-like tissue growth and organization are promoted by a tight "closure angle" of the substrate geometry. Interestingly, while Flat HA controls showed little marker expression at the end of the culture, cells grown on macrogrooves, and in particular the most closed (triangle waveform with a 517µm spatial period) showed a fast time-course of osteoblast differentiation, reaching high levels of gene and protein expression of osteocalcin and sclerostin, a marker of osteocytes. STATEMENT OF SIGNIFICANCE: Many in vitro studies have been conducted on topography at nano and microscale, fewer have focused on the influence of macrotopography on osteoblasts. Ceramics with a controlled architecture were obtained throught a 3D printing process and used to assess osteoblast behavior. Biocompatible, they allowed the long-terme survival of osteoblast cells and the laying of an important bone matrix. V-shaped grooves were found to accelerates osteoblast differentiation and promote bone-like tissue deposition and maturation (osteocyte formation), proportionately to angle closure. Such macrostructures are attractive for the design of innovative implants for bone tissue engineering and in vitro models of osteogenesis.


Assuntos
Substitutos Ósseos/química , Adesão Celular/fisiologia , Proliferação de Células/fisiologia , Durapatita/química , Osteoblastos/citologia , Osteoblastos/fisiologia , Osteogênese/fisiologia , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Teste de Materiais , Camundongos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...