Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Therm Biol ; 120: 103825, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38430855

RESUMO

Regional heterothermy is a strategy used by marine mammals to maintain a high and stable core body temperature, but its identification needs in situ measurements difficult to set up in extant wild organisms and inapplicable to extinct ones. We have analysed the oxygen isotope composition of bioapatite phosphate (δ18Op) from one permanent tooth and from thirty-six skeletal elements of one adult male harbour seal (Phoca vitulina) from the Baie de Somme (Hauts-de-France, France). We propose that the observed intra-skeletal δ18Op variability reflects tissue temperature heterogeneities typical of the pinniped regional heterothermy strategy. Our δ18Op data indicate that bone hydroxylapatite from harbour seal autopod skeletal elements (metacarpals, metatarsals, and phalanxes) mineralises at a lower temperature than that of the bone from the axial skeleton (e.g. vertebrae, ribs, and girdle bones). The results suggest that it is possible to locate a history of regional heterothermies in amphibious marine vertebrates using the δ18Op values of their mineralised tissues. This enables direct evaluation of the thermophysiology of both modern and fossil Pinnipedia from their skeletons opening perspectives on understanding their thermal adaptation to the marine environment in the fossil record. In addition to thermophysiology, oxygen isotope data from the permanent teeth of Pinnipedia, which are formed during the in utero phase from body fluid of the mother and at a stable temperature, could be valuable for locating the geographical areas inhabited by existing Pinnipedia females during their gestation period.


Assuntos
Phoca , Animais , Feminino , Masculino , Isótopos de Oxigênio/análise , Osso e Ossos , Fósseis , França
2.
J Exp Biol ; 226(23)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37901938

RESUMO

The secondary adaptation of Cetacea to a fully marine lifestyle raises the question of their ability to maintain their water balance in a hyperosmotic environment. Cetacea have access to four potential sources of water: surrounding salt oceanic water, dietary free water, metabolic water and inhaled water vapour to a lesser degree. Here, we measured the 18O/16O oxygen isotope ratio of blood plasma from 13 specimens belonging to two species of Cetacea raised under human care (four killer whales Orcinus orca, nine common bottlenose dolphins Tursiops truncatus) to investigate and quantify the contribution of preformed water (dietary free water, surrounding salt oceanic water) and metabolic water to Cetacea body water using a box-modelling approach. The oxygen isotope composition of Cetacea blood plasma indicates that dietary free water and metabolic water contribute to more than 90% of the total water input in weight for cetaceans, with the remaining 10% consisting of inhaled water vapour and surrounding water accidentally ingested or absorbed through the skin. Moreover, the contribution of metabolic water appears to be more important in organisms with a more lipid-rich diet. Beyond these physiological and conservation biology implications, this study opens up questions that need to be addressed, such as the applicability of the oxygen isotope composition of cetacean body fluids and skeletal elements as an environmental proxy of the oxygen isotope composition of present and past marine waters.


Assuntos
Golfinho Nariz-de-Garrafa , Orca , Animais , Humanos , Isótopos de Oxigênio , Vapor , Cetáceos/fisiologia
3.
Nat Commun ; 14(1): 2079, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37045849

RESUMO

Pyroclastic density currents (PDCs) are the most lethal volcanic process on Earth. Forecasting their inundation area is essential to mitigate their risk, but existing models are limited by our poor understanding of their dynamics. Here, we explore the role of evolving grain-size distribution in controlling the runout of the most common PDCs, known as block-and-ash flows (BAFs). Through a combination of theory, analysis of deposits and experiments of natural mixtures, we show that rapid changes of the grain-size distribution transported in BAFs result in the reduction of pore volume (compaction) within the first kilometres of their runout. We then use a multiphase flow model to show how the compressibility of granular mixtures leads to fragmentation-induced fluidisation (FIF) and excess pore-fluid pressure in BAFs. This process dominates the first ~2 km of their runout, where the effective friction coefficient is progressively reduced. Beyond that distance, transport is modulated by diffusion of the excess pore pressure. Fragmentation-induced fluidisation provides a physical basis to explain the decades-long use of low effective friction coefficients used in depth-averaged simulations required to match observed flow inundation.

4.
Sci Rep ; 11(1): 19657, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34608207

RESUMO

The mass extinction characterizing the Permian/Triassic boundary (PTB; ~ 252 Ma) corresponds to a major faunal shift between the Palaeozoic and the Modern evolutionary fauna. The temporal, spatial, environmental, and ecological dynamics of the associated biotic recovery remain highly debated, partly due to the scarce, or poorly-known, Early Triassic fossil record. Recently, an exceptionally complex ecosystem dated from immediately after the Smithian/Spathian boundary (~ 3 myr after the PTB) was reported: the Paris Biota (Idaho, USA). However, the spatiotemporal representativeness of this unique assemblage remained questionable as it was hitherto only reported from a single site. Here we describe three new exceptionally diverse assemblages of the same age as the Paris Biota, and a fourth younger one. They are located in Idaho and Nevada, and are taxonomic subsets of the Paris Biota. We show that the latter covered a region-wide area and persisted at least partially throughout the Spathian. The presence of a well-established marine fauna such as the Paris Biota, as soon as the early Spathian, indicates that the post-PTB biotic recovery and the installation of complex ecosystems probably took place earlier than often assumed, at least at a regional scale.

5.
J R Soc Interface ; 17(169): 20200216, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32842887

RESUMO

Fossils, including those that occasionally preserve decay-prone soft tissues, are mostly made of minerals. Accessing their chemical composition provides unique insight into their past biology and/or the mechanisms by which they preserve, leading to a series of developments in chemical and elemental imaging. However, the mineral composition of fossils, particularly where soft tissues are preserved, is often only inferred indirectly from elemental data, while X-ray diffraction that specifically provides phase identification received little attention. Here, we show the use of synchrotron radiation to generate not only X-ray fluorescence elemental maps of a fossil, but also mineralogical maps in transmission geometry using a two-dimensional area detector placed behind the fossil. This innovative approach was applied to millimetre-thick cross-sections prepared through three-dimensionally preserved fossils, as well as to compressed fossils. It identifies and maps mineral phases and their distribution at the microscale over centimetre-sized areas, benefitting from the elemental information collected synchronously, and further informs on texture (preferential orientation), crystallite size and local strain. Probing such crystallographic information is instrumental in defining mineralization sequences, reconstructing the fossilization environment and constraining preservation biases. Similarly, this approach could potentially provide new knowledge on other (bio)mineralization processes in environmental sciences. We also illustrate that mineralogical contrasts between fossil tissues and/or the encasing sedimentary matrix can be used to visualize hidden anatomies in fossils.


Assuntos
Fósseis , Síncrotrons , Radiografia , Difração de Raios X , Raios X
6.
Sci Rep ; 10(1): 3574, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32107415

RESUMO

Crustacean eggs are rare in the fossil record. Here we report the exquisite preservation of a fossil polychelidan embedded within an unbroken nodule from the Middle Jurassic La Voulte-sur-Rhône Lagerstätte (France) and found with hundreds of eggs attached to the pleon. This specimen belongs to a new species, Palaeopolycheles nantosueltae sp. nov. and offers unique clues to discuss the evolution of brooding behaviour in polychelidan lobsters. In contrast to their development, which now relies on a long-lived planktic larval stage that probably did not exist in the early evolutionary steps of the group, the brood size of polychelidan lobsters seems to have remained unchanged and comparatively small since the Jurassic. This finding is at odds with reproductive strategies in other lobster groups, in which a long-lived planktic larval stage is associated with a large brood size.


Assuntos
Nephropidae/classificação , Óvulo/química , Animais , Evolução Biológica , Fósseis/anatomia & histologia , Fósseis/história , França , História Antiga , Nephropidae/anatomia & histologia , Nephropidae/genética , Nephropidae/crescimento & desenvolvimento , Óvulo/classificação , Óvulo/crescimento & desenvolvimento , Paleontologia
7.
Sci Rep ; 9(1): 20220, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882600

RESUMO

With approximately 1,500 extant species, freshwater crabs (Decapoda: Brachyura) are among the most diverse decapod crustaceans. Nevertheless, their fossil record is extremely limited: only Potamidae, Potamonautidae and Trichodactylidae are reported up to the Eocene of the Neotropics so far. This work documents unusually large decapod claws from the Upper Cretaceous (Campanian) continental deposits of Velaux and vicinity (southern France), in close association with large vertebrate remains. In addition to (1) the systematic assignment of these claws, the study addresses (2) the salinity trends in the deposit environment from its faunal assemblage and the elementary chemical patterns of fossils, and (3) the likely scenario for their auto/allochthony in the Velaux fluvial system. These claws belong to a new taxon, Dinocarcinus velauciensis n. gen. n. sp., referred to as Portunoidea sensu lato, a group of "true" crabs nowadays linked to marine systems. However, the faunal assemblage, the claw taphonomy and the carbonates Y/Ho signatures support their ancient freshwater/terrestrial ecology, making them the oldest reported continental brachyurans and extending the presence of crabs in freshwater environments by 40 Ma. Either as primary or as secondary freshwater crabs, the occurrence of these portunoids in Velaux is an evidence for the independent colonizations of continental environments by multiple brachyuran clades over time, as early as the Campanian.


Assuntos
Osso e Ossos/anatomia & histologia , Braquiúros/anatomia & histologia , Dinossauros/anatomia & histologia , Fósseis , Casco e Garras/anatomia & histologia , Animais , Evolução Biológica , Braquiúros/classificação , Dinossauros/classificação , Água Doce , Modelos Biológicos , Paleontologia/métodos , Especificidade da Espécie
8.
Naturwissenschaften ; 106(7-8): 38, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31209559

RESUMO

Xiphosurida-crown group horseshoe crabs-are a group of morphologically conservative marine chelicerates (at least since the Jurassic). They represent an idealised example of evolutionary stasis. Unfortunately, body fossils of horseshoe crabs seldom preserve appendages and their associated features; thus, an important aspect of their morphology is absent in explorations of their conservative Bauplan. As such, fossil horseshoe crab appendages are rarely considered within a comparative framework: previous comparisons have focussed almost exclusively on extant taxa to the exclusion of extinct taxa. Here, we examine eight specimens of the xiphosurid Tachypleus syriacus (Woodward, 1879) from the Cenomanian (ca 100 Ma) Konservat-Lagerstätten of Lebanon, five of which preserve the cephalothoracic and thoracetronic appendages in exceptional detail. Comparing these appendages of T. syriacus with other fossil xiphosurids highlights the conserved nature of appendage construction across Xiphosurida, including examples of Austrolimulidae, Paleolimulidae, and Limulidae. Conversely, Belinuridae have more elongate cephalothoracic appendages relative to body length. Differences in appendage sizes are likely related to the freshwater and possible subaerial life modes of belinurids, contrasting with the primarily marine habits of other families. The morphological similarity of T. syriacus to extant members of the genus indicates that the conserved nature of the generic lineage can be extended to ecological adaptations, notably burrowing, swimming, possible diet, and sexual dimorphism.


Assuntos
Evolução Biológica , Fósseis/anatomia & histologia , Caranguejos Ferradura/anatomia & histologia , Caranguejos Ferradura/classificação , Adaptação Fisiológica , Animais , Ecossistema , Extremidades/anatomia & histologia , Filogenia , Especificidade da Espécie
9.
Sci Rep ; 9(1): 5332, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30926859

RESUMO

Exceptional and extremely rare preservation of soft parts, eyes, or syn-vivo associations provide crucial palaeoecological information on fossil-rich deposits. Here we present exceptionally preserved specimens of the polychelidan lobster Voulteryon parvulus, from the Jurassic of La Voulte-sur-Rhône Fossil-Lagerstätte, France, bearing eyes with hexagonal and square facets, ovaries, and a unique association with epibiont thecideoid brachiopods, giving insights onto the palaeoenvironment of this Lagerstätte. The eyes, mostly covered in hexagonal facets are interpreted as either apposition eyes (poorly adapted to low-light environment) or, less likely, as refractive or parabolic superposition eyes (compatible with dysphotic palaeoenvironments). The interpretation that V. parvulus had apposition eyes suggests an allochthonous, shallow water origin. However, the presence of thecideoid brachiopod ectosymbionts on its carapace, usually associated to dim-light paleoenvironments and/or rock crevices, suggests that V. parvulus lived in a dim-light setting. This would support the less parsimonious interpretation that V. parvulus had superposition eyes. If we accept the hypothesis that V. parvulus had apposition eyes, since the La Voulte palaeoenvironment is considered deep water and had a soft substrate, V. parvulus could have moved into the La Voulte Lagerstätte setting. If this is the case, La Voulte biota would record a combination of multiple palaeoenvironments.


Assuntos
Decápodes , Fósseis , Paleontologia , Animais , Decápodes/anatomia & histologia , França
10.
Sci Adv ; 3(2): e1602159, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28246643

RESUMO

In the wake of the end-Permian mass extinction, the Early Triassic (~251.9 to 247 million years ago) is portrayed as an environmentally unstable interval characterized by several biotic crises and heavily depauperate marine benthic ecosystems. We describe a new fossil assemblage-the Paris Biota-from the earliest Spathian (middle Olenekian, ~250.6 million years ago) of the Bear Lake area, southeastern Idaho, USA. This highly diversified assemblage documents a remarkably complex marine ecosystem including at least seven phyla and 20 distinct metazoan orders, along with algae. Most unexpectedly, it combines early Paleozoic and middle Mesozoic taxa previously unknown from the Triassic strata, among which are primitive Cambrian-Ordovician leptomitid sponges (a 200-million year Lazarus taxon) and gladius-bearing coleoid cephalopods, a poorly documented group before the Jurassic (~50 million years after the Early Triassic). Additionally, the crinoid and ophiuroid specimens show derived anatomical characters that were thought to have evolved much later. Unlike previous works that suggested a sluggish postcrisis recovery and a low diversity for the Early Triassic benthic organisms, the unexpected composition of this exceptional assemblage points toward an early and rapid post-Permian diversification for these clades. Overall, it illustrates a phylogenetically diverse, functionally complex, and trophically multileveled marine ecosystem, from primary producers up to top predators and potential scavengers. Hence, the Paris Biota highlights the key evolutionary position of Early Triassic fossil ecosystems in the transition from the Paleozoic to the Modern marine evolutionary fauna at the dawn of the Mesozoic era.


Assuntos
Organismos Aquáticos/fisiologia , Evolução Biológica , Ecossistema , Fósseis , Filogenia , Animais
11.
Invertebr Biol ; 135(3): 179-190, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27708504

RESUMO

The geological age of the onychophoran crown-group, and when the group came onto land, have been sources of debate. Although stem-group Onychophora have been identified from as early as the Cambrian, the sparse record of terrestrial taxa from before the Cretaceous is subject to contradictory interpretations. A Late Carboniferous species from the Mazon Creek biota of the USA, Helenodora inopinata, originally interpreted as a crown-group onychophoran, has recently been allied to early Cambrian stem-group taxa. Here we describe a fossil species from the Late Carboniferous Montceau-les-Mines Lagerstätte, France, informally referred to as an onychophoran for more than 30 years. The onychophoran affinities of Antennipatus montceauensis gen. nov., sp. nov. are indicated by the form of the trunk plicae and the shape and spacing of their papillae, details of antennal annuli, and the presence of putative slime papillae. The poor preservation of several key systematic characters for extant Onychophora, however, prohibits the precise placement of the Carboniferous fossil in the stem or crown of the two extant families, or the onychophoran stem-group as a whole. Nevertheless, A. montceauensis is the most compelling candidate to date for a terrestrial Paleozoic onychophoran.

12.
Zoological Lett ; 2: 13, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27429789

RESUMO

BACKGROUND: Modern representatives of Polychelida (Polychelidae) are considered to be entirely blind and have largely reduced eyes, possibly as an adaptation to deep-sea environments. Fossil species of Polychelida, however, appear to have well-developed compound eyes preserved as anterior bulges with distinct sculpturation. METHODS: We documented the shapes and sizes of eyes and ommatidia based upon exceptionally preserved fossil polychelidans from Binton (Hettangian, United-Kingdom), Osteno (Sinemurian, Italy), Posidonia Shale (Toarcian, Germany), La Voulte-sur-Rhône (Callovian, France), and Solnhofen-type plattenkalks (Kimmeridgian-Tithonian, Germany). For purposes of comparison, sizes of the eyes of several other polychelidans without preserved ommatidia were documented. Sizes of ommatidia and eyes were statistically compared against carapace length, taxonomic group, and outcrop. RESULTS: Nine species possess eyes with square facets; Rosenfeldia oppeli (Woodward, 1866), however, displays hexagonal facets. The sizes of eyes and ommatidia are a function of carapace length. No significant differences were discerned between polychelidans from different outcrops; Eryonidae, however, have significantly smaller eyes than other groups. DISCUSSION: Fossil eyes bearing square facets are similar to the reflective superposition eyes found in many extant decapods. As such, they are the earliest example of superposition eyes. As reflective superposition is considered plesiomorphic for Reptantia, this optic type was probably retained in Polychelida. The two smallest specimens, a Palaeopentacheles roettenbacheri (Münster, 1839) and a Hellerocaris falloti (Van Straelen, 1923), are interpreted as juveniles. Both possess square-shaped facets, a typical post-larval feature. The eye morphology of these small specimens, which are far smaller than many extant eryoneicus larvae, suggests that Jurassic polychelidans did not develop via giant eryoneicus larvae. In contrast, another species we examined, Rosenfeldia oppeli (Woodward, 1866), did not possess square-shaped facets, but rather hexagonal ones, which suggests that this species did not possess reflective superposition eyes. The hexagonal facets may indicate either another type of superposition eye (refractive or parabolic superposition), or an apposition eye. As decapod larvae possess apposition eyes with hexagonal facets, it is most parsimonious to consider eyes of R. oppeli as apposition eyes evolved through paedomorphic heterochrony. CONCLUSION: Polychelidan probably originally had reflective superposition. R. oppeli, however, probably gained apposition eyes through paedomorphosis.

13.
Nat Commun ; 7: 10320, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26785293

RESUMO

Vision has revolutionized the way animals explore their environment and interact with each other and rapidly became a major driving force in animal evolution. However, direct evidence of how ancient animals could perceive their environment is extremely difficult to obtain because internal eye structures are almost never fossilized. Here, we reconstruct with unprecedented resolution the three-dimensional structure of the huge compound eye of a 160-million-year-old thylacocephalan arthropod from the La Voulte exceptional fossil biota in SE France. This arthropod had about 18,000 lenses on each eye, which is a record among extinct and extant arthropods and is surpassed only by modern dragonflies. Combined information about its eyes, internal organs and gut contents obtained by X-ray microtomography lead to the conclusion that this thylacocephalan arthropod was a visual hunter probably adapted to illuminated environments, thus contradicting the hypothesis that La Voulte was a deep-water environment.


Assuntos
Artrópodes/anatomia & histologia , Artrópodes/ultraestrutura , Olho Composto de Artrópodes/anatomia & histologia , Olho Composto de Artrópodes/ultraestrutura , Animais , Fósseis , Preservação Biológica
14.
Curr Biol ; 26(3): 383-90, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26776738

RESUMO

Branchiopod crustaceans are represented by fairy, tadpole, and clam shrimps (Anostraca, Notostraca, Laevicaudata, Spinicaudata), which typically inhabit temporary freshwater bodies, and water fleas (Cladoceromorpha), which live in all kinds of freshwater and occasionally marine environments [1, 2]. The earliest branchiopods occur in the Cambrian, where they are represented by complete body fossils from Sweden such as Rehbachiella kinnekullensis [3] and isolated mandibles preserved as small carbonaceous fossils [4-6] from Canada. The earliest known continental branchiopods are associated with hot spring environments [7] represented by the Early Devonian Rhynie Chert of Scotland (410 million years ago) and include possible stem-group or crown-group Anostraca, Notostraca, and clam shrimps or Cladoceromorpha [8-10], which differ morphologically from their modern counterparts [1, 2, 11]. Here we report the discovery of an ephemeral pool branchiopod community from the 365-million-year-old Strud locality of Belgium. It is characterized by new anostracans and spinicaudatans, closely resembling extant species, and the earliest notostracan, Strudops goldenbergi [12]. These branchiopods released resting eggs into the sediment in a manner similar to their modern representatives [1, 2]. We infer that this reproductive strategy was critical to overcoming environmental constraints such as seasonal desiccation imposed by living on land. The pioneer colonization of ephemeral freshwater pools by branchiopods in the Devonian was followed by remarkable ecological and morphological stasis that persists to the present day.


Assuntos
Crustáceos/anatomia & histologia , Crustáceos/fisiologia , Fósseis/anatomia & histologia , Animais , Bélgica , Crustáceos/classificação , Água Doce
15.
Arthropod Struct Dev ; 45(2): 122-132, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26577513

RESUMO

Polychelidan lobsters are fascinating crustaceans that were known as fossils before being discovered in the deep-sea. They differ from other crustaceans by having four to five pairs of claws. Although recent palaeontological studies have clarified the systematics and phylogeny of the group, the biology of extant polychelidans and--first of all--their anatomy are poorly documented. Numerous aspects of the evolutionary history of the group remain obscure, in particular, how and when polychelidans colonized the deep-sea and became restricted to it. Surprisingly, the biology of extant polychelidans and the anatomy of all species, fossil and recent, are poorly documented. Here, X-ray microtomography (XTM), applied to an exceptionally well-preserved specimen from the La Voulte Lagerstätte, reveals for the first time vital aspects of the external and internal morphology of Voulteryon parvulus (Eryonidae), a 165-million-year-old polychelidan: 1) its mouthparts (maxillae and maxillipeds), 2) its digestive tract and 3) its reproductive organs. Comparisons with dissected specimens clearly identify this specimen as a female with mature ovaries. This set of new information offers new insights into the feeding and reproductive habits of Mesozoic polychelidans. Contrasting with other Jurassic polychelidans that lived in shallow-water environments, V. parvulus spawned in, and probably inhabited, relatively deep-water environments, as do the survivors of the group.


Assuntos
Decápodes/anatomia & histologia , Decápodes/fisiologia , Fósseis/anatomia & histologia , Animais , Evolução Biológica , Feminino , França , Microtomografia por Raio-X
16.
Arthropod Struct Dev ; 45(2): 97-107, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26319267

RESUMO

A new fossil lobster from the Cretaceous of Lebanon, Charbelicaris maronites gen. et sp. nov., is presented here, while the former species 'Cancrinos' libanensis is re-described as Paracancrinos libanensis comb. nov. P. libanensis is shown to be closer related to the contemporary slipper lobsters than to Cancrinos claviger (lithographic limestones, Jurassic, southern Germany). A finely-graded evolutionary scenario for the slipper-lobster morphotype is reconstructed based on these fossil species and extant forms. The evolutionary changes that gave rise to the current plate-like antennae of Scyllaridae, a key apomorphy of this group, are traced back through time. The antenna of what is considered the oldest slipper lobster became petaloid and consisted of about 20 fully articulated elements. For this group the name Scyllarida sensu lato tax. nov. is introduced. In a next evolutionary step, the proximal articles became conjoined and a lateral extension appeared on peduncle element 3. The entire distal petaloid region is conjoined already at the node of Verscyllarida tax. nov. In modern slipper lobsters, Neoscyllarida tax nov., the distal region is no longer petaloid in shape but asymmetrical. The study also emphasizes that exceptionally preserved fossils need to be documented with optimal documentation techniques to obtain all available information.


Assuntos
Evolução Biológica , Decápodes/anatomia & histologia , Decápodes/classificação , Animais , Antenas de Artrópodes/anatomia & histologia , Fósseis/anatomia & histologia , Alemanha , Filogenia
17.
Geodiversitas ; 38(3): 341-353, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28255262

RESUMO

A new set of Paleocene and Eocene decapod crustaceans is described from the Kirthar Range of Pakistan. Two new ghost shrimps (Crustacea, Decapoda, Callianassidae) are described: Neocallichirus khadroensis Hyzný & Charbonnier, n. sp. from the Paleocene (Danian, Khadro Formation) of Gawar Band, Ranikot District, and Neocallichirus lakhraensis Hyzný & Charbonnier, n. sp. from the Early Eocene (Ypresian, Lakhra Formation) of Rbod Nala, Jhirak District. Both new species exhibit chelipeds which are morphologically surprisingly close to extant Neocallichirus karumba (Poore & Griffin, 1979) from the Indo-West Pacific. A group of species sharing this same cheliped morphology is provisionally called the "karumba group" based on Neocallichirus karumba, best documented species. The "karumba group" encompasses seven fossil species: the two new Pakistani species, Neocallichirus tuberculatus (Lorenthey in Lorenthey & Beurlen, 1929) n. comb. from the Eocene of Hungary, Neocallichirus borensis Beschin, De Angeli, Checchi & Mietto, 2006 from the Eocene of Italy, Neocallichirus birmanicus (Noetling, 1901) n. comb. from the Miocene of Myanmar, Neocallichirus dijki (Martin, 1883) from the Miocene of Java and Philippines, and the subfossil Neocallichirus maximus (A. Milne-Edwards, 1870) from Thailand. Based upon the extant and fossil occurrences, it is difficult to reconstruct migration pattern of the "karumba group". For now, it can be concluded, that at the genus level, a relative homogeneity of the ghost shrimps is observed between the Eastern and the Western Tethyan regions, as already suggested by Merle et al. (2014) for the assemblage of volutid gastropods from the Lakhra Formation.

18.
Bull Volcanol ; 78(8): 54, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-32355390

RESUMO

Transitions between explosive and effusive activity are commonly observed during dome-forming eruptions and may be linked to factors such as magma influx, ascent rate and degassing. However, the interplay between these factors is complex and the resulting eruptive behaviour often unpredictable. This paper focuses on the driving forces behind the explosive and effusive activity during the well-documented 2010 eruption of Merapi, the volcano's largest eruption since 1872. Time-controlled samples were collected from the 2010 deposits, linked to eruption stage and style of activity. These include scoria and pumice from the initial explosions, dense and scoriaceous dome samples formed via effusive activity, as well as scoria and pumice samples deposited during subplinian column collapse. Quantitative textural analysis of groundmass feldspar microlites, including measurements of areal number density, mean microlite size, crystal aspect ratio, groundmass crystallinity and crystal size distribution analysis, reveal that shallow pre- and syn-eruptive magmatic processes acted to govern the changing behaviour during the eruption. High-An (up to ∼80 mol% An) microlites from early erupted samples reveal that the eruption was likely preceded by an influx of hotter or more mafic magma. Transitions between explosive and effusive activity in 2010 were driven primarily by the dynamics of magma ascent in the conduit, with degassing and crystallisation acting via feedback mechanisms, resulting in cycles of effusive and explosive activity. Explosivity during the 2010 eruption was enhanced by the presence of a 'plug' of cooled magma within the shallow magma plumbing system, which acted to hinder degassing, leading to overpressure prior to initial explosive activity.

19.
Cladistics ; 31(3): 231-249, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34772264

RESUMO

A phylogenetic analysis of a total of 31 species: 27 fossil species from seven families (Glypheidae, Litogastridae, Mecochiridae, Pemphicidae, Erymidae, Clytiopsidae, Chimaerastacidae), and four extant species from three families (Glypheidae, Nephropidae, Stenopodidae) is proposed. Most of the genera considered are coded exclusively based upon their type species and, as much as possible, based upon the type specimens. The cladistic analysis demonstrates that the glypheidean lobsters (infraorder Glypheidea) form a monophyletic group including two superfamilies: Glypheoidea and Pemphicoidea new status. Glypheoidea includes three families: Glypheidae, Mecochiridae and Litogastridae. Litogastridae is the sister group of the clade Glypheidae + Mecochiridae. Pemphicoidea includes a single family: Pemphicidae. A new classification of Glypheidea is proposed and currently known genera are rearranged based upon the phylogenetic analysis.

20.
PLoS One ; 9(1): e86946, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24489809

RESUMO

The interpretation of flattened fossils remains a major challenge due to compression of their complex anatomies during fossilization, making critical anatomical features invisible or hardly discernible. Key features are often hidden under greatly preserved decay prone tissues, or an unpreparable sedimentary matrix. A method offering access to such anatomical features is of paramount interest to resolve taxonomic affinities and to study fossils after a least possible invasive preparation. Unfortunately, the widely-used X-ray micro-computed tomography, for visualizing hidden or internal structures of a broad range of fossils, is generally inapplicable to flattened specimens, due to the very high differential absorbance in distinct directions. Here we show that synchrotron X-ray fluorescence spectral raster-scanning coupled to spectral decomposition or a much faster Kullback-Leibler divergence based statistical analysis provides microscale visualization of tissues. We imaged exceptionally well-preserved fossils from the Late Cretaceous without needing any prior delicate preparation. The contrasting elemental distributions greatly improved the discrimination of skeletal elements material from both the sedimentary matrix and fossilized soft tissues. Aside content in alkaline earth elements and phosphorus, a critical parameter for tissue discrimination is the distinct amounts of rare earth elements. Local quantification of rare earths may open new avenues for fossil description but also in paleoenvironmental and taphonomical studies.


Assuntos
Peixes/anatomia & histologia , Fósseis , Metais Terras Raras/química , Penaeidae/anatomia & histologia , Espectrometria por Raios X/métodos , Animais , Paleontologia , Espectrometria por Raios X/instrumentação , Síncrotrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...