Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trop Biomed ; 33(4): 786-798, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33579076

RESUMO

Burkholderia pseudomallei a saprophyte found in soil and stagnant water is the causative agent of human melioidosis, an often cause fatal disease. B. pseudomallei is intrinsically resistant to many antibiotics. The stringent response is a global bacterial adaptation process in response to nutritional limitation and is mediated by the alarmone (p)ppGpp, which is produced by two proteins, RelA and SpoT. In order to test whether the stringent response is involved in ceftazidime tolerance, biofilm formation, and bacterial survival in the soil microcosm, B. pseudomallei strain K96243 and its isogenic ΔrelA and ΔrelAΔspoT mutants were grown in rich and nutrient-limited media. In nutrient-limiting conditions, both the wild type and mutants were found to be up to 64-times more tolerant to ceftazidime than when grown in rich culture conditions. Moreover, the biofilm formation of all bacterial isolates tested were significantly higher under nutrient-limiting conditions than under nutrient-rich conditions. The ΔrelAΔspoT mutant produced less biofilm than its wild type or ΔrelA mutant under nutrient-limiting conditions. The survival of the ΔrelAΔspoT double mutant cultured in 1% moisture content soil was significantly decreased compared to the wild type and the ΔrelA mutant. Therefore, the RelA/SpoT protein family might represent a promising target for the development of novel antimicrobial agents to combat B. pseudomallei.

2.
J Biol Chem ; 276(6): 4245-50, 2001 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-11078739

RESUMO

The cell surface expression of group 2 capsular polysaccharides involves the translocation of the polysaccharide from its site of synthesis on the inner face of the cytoplasmic membrane onto the cell surface. The transport process is independent of the repeat structure of the polysaccharide, and translocation across the periplasm requires the cytoplasmic membrane-anchored protein KpsE and the periplasmic protein KpsD. In this paper we establish the topology of the KpsE protein and demonstrate that the C terminus interacts with the periplasmic face of the cytoplasmic membrane. By chemical cross-linking we show that KpsE is likely to exist as a dimer and that dimerization is independent of the other Kps proteins or the synthesis of capsular polysaccharide. No interaction between KpsD and KpsE could be demonstrated by chemical cross-linking, although in the presence of both KpsE and Lpp, KpsD could be cross-linked to a 7-kDa protein of unknown identity. In addition, we demonstrate that KpsD is present not only within the periplasm but is also in both the cytoplasmic and outer membrane fractions and that the correct membrane association of KpsD was dependent on KpsE, Lpp, and the secreted polysaccharide molecule. Both KpsD and KpsE showed increased proteinase K sensitivity in the different mutant backgrounds, reflecting conformational changes in the KpsD and KpsE proteins as a result of the disruption of the transport process. Collectively the data suggest that the trans-periplasmic export involves KpsD acting as the link between the cytoplasmic membrane transporter and the outer membrane with KpsE acting to facilitate this transport process.


Assuntos
Proteínas de Bactérias/fisiologia , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras , Periplasma/metabolismo , Proteínas Periplásmicas , Polissacarídeos/metabolismo , Proteínas de Bactérias/metabolismo , Sequência de Bases , Transporte Biológico , Primers do DNA , Endopeptidase K/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...