Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Food Sci ; 87(7): 3260-3267, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35673890

RESUMO

Potatoes are an important food crop that undergo postharvest storage, reconditioning, and cooking. Colored-flesh varieties of potatoes are rich in phenolic acids and anthocyanins. Previous studies have suggested that purple-flesh potatoes can inhibit colon cancer cells in vitro and reduce colon carcinogenesis in vivo. Vacuum frying (VF), as an alternative to conventional frying (CF), reduces fat content and may promote polyphenol retention in potato chips. We examined the impacts of reconditioning (storing at 13°C for 3 weeks following the 90-day cold storage at 7°C) and frying method on phenolic chemistry and in vitro colon cancer stem cell (CCSC) inhibitory activity of purple-flesh potato chips. We found that reconditioned chips exhibited higher total phenolic content (TPC) than nonreconditioned chips. We found that VF chips had lower TPC than CF chips. We observed no interaction between treatments. We found that VF chips had 27% higher total monomeric anthocyanin levels than CF chips, and observed a significant interaction between treatments. We found that VF chips had higher concentrations of caffeic acid (42%-72% higher), malvidin (46%-98% higher), and pelargonidin (55%-300% higher) than CF chips. We found that reconditioning had no effect. We found that VF chips had greater in vitro CCSC inhibitory activity than CF chips. Our results suggest that VF can improve the phytochemical profile and health-related functionality of purple-flesh potato chips, but additional studies are needed to determine if these results translate to the in vivo situation. PRACTICAL APPLICATION: Our current study shows that vacuum frying of purple-flesh potato chips results in higher levels of total monomeric anthocyanins and concentrations of specific polyphenols as compared to chips produced by conventional frying. These differences correlated with better in vitro colon cancer stem cell inhibitory activity. Although additional in vivo studies are needed, our current results suggest that it may be possible for potato processors to improve the health-related functionality of purple-flesh potato chips through the use of vacuum frying.


Assuntos
Neoplasias do Colo , Solanum tuberosum , Antocianinas/farmacologia , Humanos , Células-Tronco Neoplásicas/química , Fenóis/análise , Polifenóis/análise , Solanum tuberosum/química , Vácuo
2.
Cancer Prev Res (Phila) ; 10(8): 442-450, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28576788

RESUMO

Basal colonic crypt stem cells are long lived and play a role in colon homeostasis. Previous evidence has shown that high-calorie diet (HCD) enhances colonic stem cell numbers and expansion of the proliferative zone, an important biomarker for colon cancer. However, it is not clear how HCD drives dysregulation of colon stem cell/colonocyte proliferative kinetics. We used a human-relevant pig model and developed an immunofluorescence technique to detect and quantify colonic stem cells. Pigs (n = 8/group) were provided either standard diet (SD; 5% fat) or HCD (23% fat) for 13 weeks. HCD- and SD-consuming pigs had similar total calorie intake, serum iron, insulin, and glucose levels. However, HCD elevated both colonic proliferative zone (KI-67) and stem cell zone (ASCL-2 and BMI-1). Proliferative zone correlated with elevated innate colonic inflammatory markers TLR-4, NF-κB, IL6, and lipocalin-2 (r ≥ 0.62, P = 0.02). Elevated gut bacterial phyla proteobacteria and firmicutes in HCD-consuming pigs correlated with proliferative and stem cell zone. Colonic proteome data revealed the upregulation of proteins involved in cell migration and proliferation and correlated with proliferative and stem cell zone expansion. Our study suggests that pig colon, unlike mice, has two distinct stem cells (ASCL-2 and BMI-1) similar to humans, and HCD increases expansion of colonic proliferative and stem cell zone. Thus, pig model can aid in the development of preventive strategies against gut bacterial dysbiosis and inflammation-promoted diseases, such as colon cancer. Cancer Prev Res; 10(8); 442-50. ©2017 AACR.


Assuntos
Colo/patologia , Dieta , Células-Tronco/patologia , Animais , Humanos , Resistência à Insulina/fisiologia , Mucosa Intestinal/patologia , Masculino , Camundongos , Distribuição Aleatória , Suínos
3.
BMC Complement Altern Med ; 16: 278, 2016 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-27506388

RESUMO

BACKGROUND: We have previously shown that the grape bioactive compound resveratrol (RSV) potentiates grape seed extract (GSE)-induced colon cancer cell apoptosis at physiologically relevant concentrations. However, RSV-GSE combination efficacy against colon cancer stem cells (CSCs), which play a key role in chemotherapy and radiation resistance, is not known. METHODS: We tested the anti-cancer efficacy of the RSV-GSE against colon CSCs using isolated human colon CSCs in vitro and an azoxymethane-induced mouse model of colon carcinogenesis in vivo. RESULTS: RSV-GSE suppressed tumor incidence similar to sulindac, without any gastrointestinal toxicity. Additionally, RSV-GSE treatment reduced the number of crypts containing cells with nuclear ß-catenin (an indicator of colon CSCs) via induction of apoptosis. In vitro, RSV-GSE suppressed - proliferation, sphere formation, nuclear translocation of ß-catenin (a critical regulator of CSC proliferation) similar to sulindac in isolated human colon CSCs. RSV-GSE, but not sulindac, suppressed downstream protein levels of Wnt/ß-catenin pathway, c-Myc and cyclin D1. RSV-GSE also induced mitochondrial-mediated apoptosis in colon CSCs characterized by elevated p53, Bax/Bcl-2 ratio and cleaved PARP. Furthermore, shRNA-mediated knockdown of p53, a tumor suppressor gene, in colon CSCs did not alter efficacy of RSV-GSE. CONCLUSION: The suppression of Wnt/ß-catenin signaling and elevated mitochondrial-mediated apoptosis in colon CSCs support potential clinical testing/application of grape bioactives for colon cancer prevention and/or therapy.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias do Colo/metabolismo , Extrato de Sementes de Uva/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Vitis/química , Animais , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Extrato de Sementes de Uva/química , Masculino , Camundongos , Células-Tronco Neoplásicas/metabolismo , Resveratrol , Transdução de Sinais/efeitos dos fármacos , Estilbenos/química , Estilbenos/farmacologia , beta Catenina/metabolismo
4.
Cancers (Basel) ; 8(3)2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26927179

RESUMO

The World Health Organization predicts over a 70% increase in cancer incidents in developing nations over the next decade. Although these nations have limited access to novel therapeutics, they do have access to foods that contain chemopreventive bioactive compounds such as anthocyanins, and as such, consumption of these foods can be encouraged to combat cancer. We and others have previously characterized the anti-colon cancer properties of dietary anthocyanins from different sources. Eugenia jambolana (Java plum) is a tropical medicinal fruit rich in anthocyanins, however, its anti-colon cancer properties are not well characterized. Furthermore, recent evidence suggests that colon cancer stem cells (colon CSCs) promote resistance to chemotherapy, relapse of tumors and contribute to poor prognosis. The objectives of this study were to 1) characterize the anthocyanin profile of Java plum using HPLC-MS; and 2) determine the anti-proliferative (cell counting and MTT) and pro-apoptotic (TUNEL and caspase 3/7 glo assay) properties of Java plum fruit extract (JPE) using HCT-116 colon cancer cell line and colon CSCs (positive for CD 44, CD 133 and ALDH1b1 markers). HPLC-MS analysis showed that JPE contains a variety of anthocyanins including glucosides of delphinidin, cyanidin, petunidin, peonidin and malvidin. JPE anthocyanins suppressed (p < 0.05) proliferation in HCT-116 cells and elevated (p < 0.05) apoptosis in both HCT-116 cells and colon CSCs. JPE also suppressed the stemness in colon CSCs as evaluated using colony formation assay. These results warrant further assessment of the anti-cancer activity of JPE, and its molecular mechanisms using pre-clinical models of colon cancer.

5.
J Nutr Biochem ; 26(12): 1641-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26383537

RESUMO

Cancer stem cells (CSCs) are shown to be responsible for initiation and progression of tumors in a variety of cancers. We previously showed that anthocyanin-containing baked purple-fleshed potato (PP) extracts (PA) suppressed early and advanced human colon cancer cell proliferation and induced apoptosis, but their effect on colon CSCs is not known. Considering the evidence of bioactive compounds, such as anthocyanins, against cancers, there is a critical need to study anticancer activity of PP, a global food crop, against colon CSCs. Thus, isolated colon CSCs (positive for CD44, CD133 and ALDH1b1 markers) with functioning p53 and shRNA-attenuated p53 were treated with PA at 5.0 µg/ml. Effects of baked PP (20% wt/wt) against colon CSCs were also tested in vivo in mice with azoxymethane-induced colon tumorigenesis. Effects of PA/PP were compared to positive control sulindac. In vitro, PA suppressed proliferation and elevated apoptosis in a p53-independent manner in colon CSCs. PA, but not sulindac, suppressed levels of Wnt pathway effector ß-catenin (a critical regulator of CSC proliferation) and its downstream proteins (c-Myc and cyclin D1) and elevated Bax and cytochrome c, proteins-mediating mitochondrial apoptosis. In vivo, PP reduced the number of crypts containing cells with nuclear ß-catenin (an indicator of colon CSCs) via induction of apoptosis and suppressed tumor incidence similar to that of sulindac. Combined, our data suggest that PP may contribute to reduced colon CSCs number and tumor incidence in vivo via suppression of Wnt/ß-catenin signaling and elevation of mitochondria-mediated apoptosis.


Assuntos
Antocianinas/química , Neoplasias do Colo/metabolismo , Células-Tronco Neoplásicas/metabolismo , Solanum tuberosum/química , Animais , Antineoplásicos/química , Apoptose , Azoximetano/química , Carcinogênese , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Transformação Celular Neoplásica/metabolismo , Neoplasias do Colo/dietoterapia , Neoplasias do Colo/prevenção & controle , Citocromos c/metabolismo , Alimentos , Humanos , Marcação In Situ das Extremidades Cortadas , Lentivirus , Masculino , Camundongos , Mitocôndrias/metabolismo , Células-Tronco Neoplásicas/citologia , RNA Interferente Pequeno/metabolismo , Sulindaco/química , Proteína Supressora de Tumor p53/metabolismo , Proteínas Wnt/metabolismo , Proteína X Associada a bcl-2/metabolismo , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...