Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Comput Chem ; 45(12): 886-897, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38156812

RESUMO

The various mechanisms of primary antioxidant action of a series of 2-Methoxyphenols are investigated in the present work. The electronic properties have just been studied in a joint article, so that we focus here on Hydrogen Atom Transfer (HAT), Single Electron Transfer-Proton Transfer (SET-PT) and Sequential Proton-Loss Electron-Transfer (SPLET) mechanisms. The two computational approaches used in the previous study of the structure and reactivity of these compounds [Computational and Theoretical Chemistry 1229 (2023) 114287] provide identical mechanisms trends in gas phase. In gas media, hydrogen atom transfer (HAT) is more favored. On the contrary, the solvent polarity has a significant effect on the mechanism of the antioxidant activity, since the polarity of the solvent increases the contribution of the SPLET mechanism.

2.
ACS Omega ; 4(6): 11320-11331, 2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31460235

RESUMO

New ternary and quaternary NaYS2(1-x)Te2x alloys (with x = 0, 0.33, 0.67, and 1) are proposed as promising candidates for photon energy conversion in photovoltaic applications. The effects of Te doping on crystal, spectral, and optical properties are studied within the framework of periodic density functional theory. Increasing Te content decreases the band gap (E g) considerably (from 3.96 (x = 0) to 1.62 eV (x = 0.67)) and fits a quadratic model (E g(x) = 3.96-6.78x + 4.70x 2, (r 2 = 0.96, n = 4)). The band gap of 1.62 eV makes the NaYS0.67Te1.33 alloy ideal for photovoltaic applications for their ability to absorb in the visible segment of the sunlight spectrum. The calculated exciton binding energies are 9.78 meV for NaYS1.33Te0.67 and 6.06 meV for NaYS0.67Te1.33. These values of the order of the thermal energy at room temperature suggest an easily dissociable hole-electron pair. The family of NaYS2(1-x)Te2x alloys are, therefore, promising candidates for visible photocatalytic devices and worthy of further experimental and theoretical investigations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...