Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 6(1): 111-122, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33381967

RESUMO

This paper details a passive, inductor-capacitor (LC) resonant sensor embedded in a commercial dressing for low-cost, contact-free monitoring of a wound; this would enable tracking of the healing process while keeping the site closed and sterile. Spiral LC resonators were fabricated from flexible, copper-coated polyimide and interrogated using external reader antennas connected to a two-port vector network analyzer; the forward transmission scattering parameter (S21) magnitude was collected, and the resonant frequency (MHz) and the peak-to-peak amplitude of the resonant feature were identified. These increase during the healing process as the permittivity and conductivity of the tissue change. The sensor was first tested on gelatin-based tissue-mimicking phantoms that simulate layers of muscle, blood, fat, and skin at varying phases of wound healing. Finite element modeling was also used to verify the empirical results based on the expected variations in dielectric properties of the tissue. The performance of the resonant sensors for in vivo applications was investigated by conducting animal studies using canine patients that presented with a natural wound as well as a controlled cohort of rat models with surgically administered wounds. Finally, transfer functions are presented that relate the resonant frequency to wound size using an exponential model (R2 = 0.58-0.96). The next steps in sensor design and fabrication as well as the reading platform to achieve the goal of a universal calibration curve are then discussed.


Assuntos
Bandagens , Tecnologia sem Fio , Animais , Cães , Humanos , Ratos
2.
NPJ Digit Med ; 3: 62, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32377573

RESUMO

Sweat loss can help determine hydration status of individuals working in harsh conditions, which is especially relevant to those who wear thick personal protective equipment (PPE) such as firefighters. A wireless, passive, conformable sweat sensor sticker is described here that can be worn under and interrogated through thick clothing to simultaneously measure sweat loss volume and conductivity. The sticker consists of a laser-ablated, microfluidic channel and a resonant sensor transducer. The resonant sensor is wirelessly read with a handheld vector network analyzer coupled to two, co-planar, interrogation antennas that measure the transmission loss. A sweat proxy is used to fill the channels and it is determined that the sensor can orthogonally determine the sweat conductivity and volume filled in the channel via peak transmission loss magnitude and frequency respectively. A four-person study is then used to determine level of sensor variance caused by local tissue dielectric heterogeneity and sensor-reader orientation.

3.
ACS Sens ; 3(8): 1489-1498, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-30016082

RESUMO

A passive, resonant sensor was developed that can be embedded in closed systems for wireless monitoring of hydrolytic enzyme activity. The resonators are rapidly prototyped from copper coated polyimide substrates that are masked using an indelible marker with an XY plotter and subsequently etched. The resonator's frequency response window is designed by the Archimedean coil length and pitch and is tuned for the 1-100 MHz range for better penetration through soil, water, and tissue. The resonant frequency is measured up to 5 cm stand-off distance by a coplanar, two-loop coil reader antenna attached to a vector network analyzer monitoring the S21 scattering parameter. The resonant frequency is modulated (up to 50 MHz redshift) by changing the relative permittivity of the medium in contact with the resonator (e.g., air to water). The resonant sensors are coated by an enzyme substrate, which, when degraded, causes a change in dielectric and a shift in resonant frequency (up to 7 MHz redshift). The activity (turnover rate, or kcat) of the enzyme is calculated by fitting the measured data via a custom transport and reaction model which simulates the radial digestion profile. This is used to test purified Subtilisin A and unpurified bacterial protease samples at concentrations of 30 mg/mL to 200 mg/mL with kcat ranges of 0.003-0.002 and 0.008-0.004 gsubstrate/ genzyme per second. The sensor response rate can be tuned by substrate composition (e.g., gelatin and glycerol plasticizer weight percentage). Finally, the utility of these sensors is demonstrated by wirelessly measuring the proteolytic activity of farm soil with a measured kcat of 0.00152 gsubstrate/( gsoil·s).


Assuntos
Ensaios Enzimáticos/métodos , Subtilisinas/análise , Bactérias/enzimologia , Hidrogéis/química , Hidrólise , Cinética , Microbiologia do Solo , Especificidade por Substrato , Subtilisinas/metabolismo , Tecnologia sem Fio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...