Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
1.
Genetics ; 226(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38147527

RESUMO

Inversions restrict recombination when heterozygous with standard arrangements, but often have few noticeable phenotypic effects. Nevertheless, there are several examples of inversions that can be maintained polymorphic by strong selection under laboratory conditions. A long-standing model for the source of such selection is divergence between arrangements with respect to recessive or partially recessive deleterious mutations, resulting in a selective advantage to heterokaryotypic individuals over homokaryotypes. This paper uses a combination of analytical and numerical methods to investigate this model, for the simple case of an autosomal inversion with multiple independent nucleotide sites subject to mildly deleterious mutations. A complete lack of recombination in heterokaryotypes is assumed, as well as constancy of the frequency of the inversion over space and time. It is shown that a significantly higher mutational load will develop for the less frequent arrangement. A selective advantage to heterokaryotypes is only expected when the two alternative arrangements are nearly equal in frequency, so that their mutational loads are very similar in size. The effects of some Drosophila pseudoobscura polymorphic inversions on fitness traits seem to be too large to be explained by this process, although it may contribute to some of the observed effects. Several population genomic statistics can provide evidence for signatures of a reduced efficacy of selection associated with the rarer of two arrangements, but there is currently little published data that are relevant to the theoretical predictions.


Assuntos
Inversão Cromossômica , Deriva Genética , Humanos , Ordem dos Genes , Cromossomos , Genoma
2.
J Evol Biol ; 36(12): 1761-1782, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37942504

RESUMO

Inversions are structural mutations that reverse the sequence of a chromosome segment and reduce the effective rate of recombination in the heterozygous state. They play a major role in adaptation, as well as in other evolutionary processes such as speciation. Although inversions have been studied since the 1920s, they remain difficult to investigate because the reduced recombination conferred by them strengthens the effects of drift and hitchhiking, which in turn can obscure signatures of selection. Nonetheless, numerous inversions have been found to be under selection. Given recent advances in population genetic theory and empirical study, here we review how different mechanisms of selection affect the evolution of inversions. A key difference between inversions and other mutations, such as single nucleotide variants, is that the fitness of an inversion may be affected by a larger number of frequently interacting processes. This considerably complicates the analysis of the causes underlying the evolution of inversions. We discuss the extent to which these mechanisms can be disentangled, and by which approach.


Assuntos
Inversão Cromossômica , Cromossomos , Humanos , Heterozigoto , Evolução Molecular
3.
Genetics ; 224(4)2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37348059

RESUMO

The strong reduction in the frequency of recombination in heterozygotes for an inversion and a standard gene arrangement causes the arrangements to become partially isolated genetically, resulting in sequence divergence between them and changes in the levels of neutral variability at nucleotide sites within each arrangement class. Previous theoretical studies on the effects of inversions on neutral variability have assumed either that the population is panmictic or that it is divided into 2 populations subject to divergent selection. Here, the theory is extended to a model of an arbitrary number of demes connected by migration, using a finite island model with the inversion present at the same frequency in all demes. Recursion relations for mean pairwise coalescent times are used to obtain simple approximate expressions for diversity and divergence statistics for an inversion polymorphism at equilibrium under recombination and drift, and for the approach to equilibrium following the sweep of an inversion to a stable intermediate frequency. The effects of an inversion polymorphism on patterns of linkage disequilibrium are also examined. The reduction in effective recombination rate caused by population subdivision can have significant effects on these statistics. The theoretical results are discussed in relation to population genomic data on inversion polymorphisms, with an emphasis on Drosophila melanogaster. Methods are proposed for testing whether or not inversions are close to recombination-drift equilibrium, and for estimating the rate of recombinational exchange in heterozygotes for inversions; difficulties involved in estimating the ages of inversions are also discussed.


Assuntos
Drosophila melanogaster , Polimorfismo Genético , Animais , Drosophila melanogaster/genética , Desequilíbrio de Ligação , Ordem dos Genes , Inversão Cromossômica
4.
Mol Biol Evol ; 40(2)2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36572441

RESUMO

It has recently been proposed that lower mutation rates in gene bodies compared with upstream and downstream sequences in Arabidopsis thaliana are the result of an "adaptive" modification of the rate of beneficial and deleterious mutations in these functional regions. This claim was based both on analyses of mutation accumulation lines and on population genomics data. Here, we show that several questionable assumptions were used in the population genomics analyses. In particular, we demonstrate that the difference between gene bodies and less selectively constrained sequences in the magnitude of Tajima's D can in principle be explained by the presence of sites subject to purifying selection and does not require lower mutation rates in regions experiencing selective constraints.


Assuntos
Arabidopsis , Arabidopsis/genética , Taxa de Mutação , Genética Populacional , Genômica , Mutação , Seleção Genética
5.
Mol Ecol ; 31(17): 4440-4443, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35778972

RESUMO

We write to address recent claims by regarding the potentially important and underappreciated phenomena of "indirect selection," the observation that neutral regions may be affected by natural selection. We argue both that this phenomenon-generally known as genetic hitchhiking-is neither new nor poorly studied, and that the patterns described by the authors have multiple alternative explanations.


Assuntos
Modelos Genéticos , Seleção Genética
7.
Nat Genet ; 54(7): 934-939, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35817969

RESUMO

The quantitative geneticist W. G. ('Bill') Hill, awardee of the 2018 Darwin Medal of the Royal Society and the 2019 Mendel Medal of the Genetics Society (United Kingdom), died on 17 December 2021 at the age of 81 years. Here, we pay tribute to his multiple key scientific contributions, which span population and evolutionary genetics, animal and plant breeding and human genetics. We discuss his theoretical research on the role of linkage disequilibrium (LD) and mutational variance in the response to selection, the origin of the widely used LD metric r2 in genomic association studies, the genetic architecture of complex traits, the quantification of the variation in realized relationships given a pedigree relationship and much more. We demonstrate that basic theoretical research in quantitative and statistical genetics has led to profound insights into the genetics and evolution of complex traits and made predictions that were subsequently empirically validated, often decades later.


Assuntos
Genoma , Melhoramento Vegetal , Animais , Estudo de Associação Genômica Ampla , Genômica , Humanos , Desequilíbrio de Ligação
8.
Genome Biol Evol ; 14(7)2022 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-35738021

RESUMO

We discuss the genetic, demographic, and selective forces that are likely to be at play in restricting observed levels of DNA sequence variation in natural populations to a much smaller range of values than would be expected from the distribution of census population sizes alone-Lewontin's Paradox. While several processes that have previously been strongly emphasized must be involved, including the effects of direct selection and genetic hitchhiking, it seems unlikely that they are sufficient to explain this observation without contributions from other factors. We highlight a potentially important role for the less-appreciated contribution of population size change; specifically, the likelihood that many species and populations may be quite far from reaching the relatively high equilibrium diversity values that would be expected given their current census sizes.


Assuntos
Variação Genética , Seleção Genética , Genética Populacional , Modelos Genéticos , Densidade Demográfica
9.
PLoS Biol ; 20(5): e3001669, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35639797

RESUMO

The field of population genomics has grown rapidly in response to the recent advent of affordable, large-scale sequencing technologies. As opposed to the situation during the majority of the 20th century, in which the development of theoretical and statistical population genetic insights outpaced the generation of data to which they could be applied, genomic data are now being produced at a far greater rate than they can be meaningfully analyzed and interpreted. With this wealth of data has come a tendency to focus on fitting specific (and often rather idiosyncratic) models to data, at the expense of a careful exploration of the range of possible underlying evolutionary processes. For example, the approach of directly investigating models of adaptive evolution in each newly sequenced population or species often neglects the fact that a thorough characterization of ubiquitous nonadaptive processes is a prerequisite for accurate inference. We here describe the perils of these tendencies, present our consensus views on current best practices in population genomic data analysis, and highlight areas of statistical inference and theory that are in need of further attention. Thereby, we argue for the importance of defining a biologically relevant baseline model tuned to the details of each new analysis, of skepticism and scrutiny in interpreting model fitting results, and of carefully defining addressable hypotheses and underlying uncertainties.


Assuntos
Genômica , Metagenômica , Genômica/métodos
10.
Genetics ; 220(3)2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35239967

RESUMO

R.A. Fisher's 1922 paper On the dominance ratio has a strong claim to be the foundation paper for modern population genetics. It greatly influenced subsequent work by Haldane and Wright, and contributed 3 major innovations to the study of evolution at the genetic level. First, the introduction of a general model of selection at a single locus, which showed how variability could be maintained by heterozygote advantage. Second, the use of the branching process approach to show that a beneficial mutation has a substantial chance of loss from the population, even when the population size is extremely large. Third, the invention of the concept of a probability distribution of allele frequency, caused by random sampling of allele frequencies due to finite population size, and the first use of a diffusion equation to investigate the properties of such a distribution. Although Fisher was motivated by an inference that later turned out to lack strong empirical support (a substantial contribution of dominance to quantitative trait variability), and his use of a diffusion equation was marred by a technical mistake, the paper introduced concepts and methods that pervade much subsequent work in population genetics.


Assuntos
Genética Populacional , Modelos Genéticos , Frequência do Gene , Heterozigoto , Mutação , Seleção Genética
11.
Genetics ; 221(1)2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35150278

RESUMO

The effects of selection on variability at linked sites have an important influence on levels and patterns of within-population variation across the genome. Most theoretical models of these effects have assumed that selection is sufficiently strong that allele frequency changes at the loci concerned are largely deterministic. These models have led to the conclusion that directional selection for selectively favorable mutations, or against recurrent deleterious mutations, reduces nucleotide site diversity at linked neutral sites. Recent work has shown, however, that fixations of weakly selected mutations, accompanied by significant stochastic changes in allele frequencies, can sometimes cause higher diversity at linked sites when compared with the effects of fixations of neutral mutations. This study extends this work by deriving approximate expressions for the mean conditional times to fixation and loss of mutations subject to selection, and analyzing the conditions under which selection increases rather than reduces these times. Simulations are used to examine the relations between diversity at a neutral site and the fixation and loss times of mutations at a linked site that is subject to selection. It is shown that the long-term level of neutral diversity can be increased over the purely neutral value by recurrent fixations and losses of linked, weakly selected dominant or partially dominant favorable mutations, or linked recessive or partially recessive deleterious mutations. The results are used to examine the conditions under which associative overdominance, as opposed to background selection, is likely to operate.


Assuntos
Modelos Genéticos , Seleção Genética , Frequência do Gene , Variação Genética , Mutação
12.
Evolution ; 76(4): 817-820, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35192732
13.
G3 (Bethesda) ; 11(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34544137

RESUMO

Population genetics studies often make use of a class of nucleotide site free from selective pressures, in order to make inferences about population size changes or natural selection at other sites. If such neutral sites can be identified, they offer the opportunity to avoid any confounding effects of selection. Here, we investigate evolution at putatively neutrally evolving short intronic sites in natural populations of Drosophila melanogaster and Drosophila simulans, in order to understand the properties of spontaneous mutations and the extent of GC-biased gene conversion in these species. Use of data on the genetics of natural populations is advantageous because it integrates information from large numbers of individuals over long timescales. In agreement with direct evidence from observations of spontaneous mutations in Drosophila, we find a bias in the spectrum of mutations toward AT basepairs. In addition, we find that this bias is stronger in the D. melanogaster lineage than in the D. simulans lineage. The evidence for GC-biased gene conversion in Drosophila has been equivocal. Here, we provide evidence for a weak force favoring GC in both species, which is correlated with the GC content of introns and is stronger in D. simulans than in D. melanogaster.


Assuntos
Drosophila melanogaster , Drosophila simulans , Animais , Drosophila melanogaster/genética , Evolução Molecular , Íntrons/genética , Seleção Genética
14.
Mol Ecol ; 30(16): 3896-3897, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34218481

RESUMO

Several recent publications have stated that epistatic fitness interactions cause the fixation of inversions that suppress recombination among the loci involved. Under this type of selection, however, the suppression of recombination in an inversion heterozygote can create a form of heterozygote advantage, which prevents the inversion from becoming fixed by selection. This process has been explicitly modelled by previous workers.


Assuntos
Epistasia Genética , Recombinação Genética , Inversão Cromossômica/genética , Heterozigoto , Humanos , Desequilíbrio de Ligação , Modelos Genéticos , Seleção Genética
15.
Genetics ; 219(3)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34125884

RESUMO

It has previously been shown that, conditional on its fixation, the time to fixation of a semi-dominant deleterious autosomal mutation in a randomly mating population is the same as that of an advantageous mutation. This result implies that deleterious mutations could generate selective sweep-like effects. Although their fixation probabilities greatly differ, the much larger input of deleterious relative to beneficial mutations suggests that this phenomenon could be important. We here examine how the fixation of mildly deleterious mutations affects levels and patterns of polymorphism at linked sites-both in the presence and absence of interference amongst deleterious mutations-and how this class of sites may contribute to divergence between-populations and species. We find that, while deleterious fixations are unlikely to represent a significant proportion of outliers in polymorphism-based genomic scans within populations, minor shifts in the frequencies of deleterious mutations can influence the proportions of private variants and the value of FST after a recent population split. As sites subject to deleterious mutations are necessarily found in functional genomic regions, interpretations in terms of recurrent positive selection may require reconsideration.


Assuntos
Evolução Molecular , Modelos Genéticos , Seleção Genética , Alelos , Animais , Variação Genética , Humanos
16.
Genetics ; 218(2)2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-33871627

RESUMO

Balancing selection (BLS) is the evolutionary force that maintains high levels of genetic variability in many important genes. To further our understanding of its evolutionary significance, we analyze models with BLS acting on a biallelic locus: an equilibrium model with long-term BLS, a model with long-term BLS and recent changes in population size, and a model of recent BLS. Using phase-type theory, a mathematical tool for analyzing continuous time Markov chains with an absorbing state, we examine how BLS affects polymorphism patterns in linked neutral regions, as summarized by nucleotide diversity, the expected number of segregating sites, the site frequency spectrum, and the level of linkage disequilibrium (LD). Long-term BLS affects polymorphism patterns in a relatively small genomic neighborhood, and such selection targets are easier to detect when the equilibrium frequencies of the selected variants are close to 50%, or when there has been a population size reduction. For a new mutation subject to BLS, its initial increase in frequency in the population causes linked neutral regions to have reduced diversity, an excess of both high and low frequency derived variants, and elevated LD with the selected locus. These patterns are similar to those produced by selective sweeps, but the effects of recent BLS are weaker. Nonetheless, compared to selective sweeps, nonequilibrium polymorphism and LD patterns persist for a much longer period under recent BLS, which may increase the chance of detecting such selection targets. An R package for analyzing these models, among others (e.g., isolation with migration), is available.


Assuntos
Genética Populacional , Modelos Genéticos , Seleção Genética , Animais , Evolução Molecular , Humanos , Desequilíbrio de Ligação , Cadeias de Markov , Mutação , Polimorfismo Genético
17.
Mol Biol Evol ; 38(7): 2986-3003, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-33591322

RESUMO

Current procedures for inferring population history generally assume complete neutrality-that is, they neglect both direct selection and the effects of selection on linked sites. We here examine how the presence of direct purifying selection and background selection may bias demographic inference by evaluating two commonly-used methods (MSMC and fastsimcoal2), specifically studying how the underlying shape of the distribution of fitness effects and the fraction of directly selected sites interact with demographic parameter estimation. The results show that, even after masking functional genomic regions, background selection may cause the mis-inference of population growth under models of both constant population size and decline. This effect is amplified as the strength of purifying selection and the density of directly selected sites increases, as indicated by the distortion of the site frequency spectrum and levels of nucleotide diversity at linked neutral sites. We also show how simulated changes in background selection effects caused by population size changes can be predicted analytically. We propose a potential method for correcting for the mis-inference of population growth caused by selection. By treating the distribution of fitness effect as a nuisance parameter and averaging across all potential realizations, we demonstrate that even directly selected sites can be used to infer demographic histories with reasonable accuracy.


Assuntos
Demografia/métodos , Aptidão Genética , Técnicas Genéticas , Modelos Genéticos , Seleção Genética , Teorema de Bayes , Tamanho do Genoma , Cadeias de Markov , Polimorfismo de Nucleotídeo Único
18.
bioRxiv ; 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33501439

RESUMO

Current procedures for inferring population history generally assume complete neutrality - that is, they neglect both direct selection and the effects of selection on linked sites. We here examine how the presence of direct purifying selection and background selection may bias demographic inference by evaluating two commonly-used methods (MSMC and fastsimcoal2 ), specifically studying how the underlying shape of the distribution of fitness effects (DFE) and the fraction of directly selected sites interact with demographic parameter estimation. The results show that, even after masking functional genomic regions, background selection may cause the mis-inference of population growth under models of both constant population size and decline. This effect is amplified as the strength of purifying selection and the density of directly selected sites increases, as indicated by the distortion of the site frequency spectrum and levels of nucleotide diversity at linked neutral sites. We also show how simulated changes in background selection effects caused by population size changes can be predicted analytically. We propose a potential method for correcting for the mis-inference of population growth caused by selection. By treating the DFE as a nuisance parameter and averaging across all potential realizations, we demonstrate that even directly selected sites can be used to infer demographic histories with reasonable accuracy.

20.
Annu Rev Ecol Evol Syst ; 52: 177-197, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37089401

RESUMO

Patterns of variation and evolution at a given site in a genome can be strongly influenced by the effects of selection at genetically linked sites. In particular, the recombination rates of genomic regions correlate with their amount of within-population genetic variability, the degree to which the frequency distributions of DNA sequence variants differ from their neutral expectations, and the levels of adaptation of their functional components. We review the major population genetic processes that are thought to lead to these patterns, focusing on their effects on patterns of variability: selective sweeps, background selection, associative overdominance, and Hill-Robertson interference among deleterious mutations. We emphasize the difficulties in distinguishing among the footprints of these processes and disentangling them from the effects of purely demographic factors such as population size changes. We also discuss how interactions between selective and demographic processes can significantly affect patterns of variability within genomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...