Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theriogenology ; 170: 107-116, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34004455

RESUMO

The ability to efficiently introduce site-specific genetic modifications to the mammalian genome has been dramatically improved with the use of the CRISPR/Cas9 system. CRISPR/Cas9 is a powerful tool used to generate genetic modifications by causing double-strand breaks (DSBs) in DNA. Artemis (ART; also known as DCLRE1C), is a nuclear protein and is essential for DSB end joining in DNA repair via the canonical non-homologous end joining (c-NHEJ) pathway. In this work, we tested whether ART deficiency affects DNA repair following CRISPR/Cas9 induced DSBs in somatic cells. We also demonstrated the effect of microinjection timing on embryo developmental ability and gene targeting efficiency of CRISPR/Cas9 system to disrupt the interleukin 2 receptor subunit gamma (IL2RG) locus using porcine in vitro fertilization (IVF) and somatic cell nuclear transfer (SCNT) derived embryos. In comparison to non-injected controls, CRISPR/Cas9 injection of IVF derived zygotes at 4 h and 8 h after fertilization did not impact cleavage and blastocyst rate. Gene modification rate was observed to be higher, 53.3% (9/16) in blastocysts injected 4 h post-fertilization as compared to 11.1% (1/9) in blastocysts injected 8 h post-fertilization. Microinjection 8 h after chemical activation of SCNT derived embryos decreased blastocyst development rate compared to non-injected controls but showed a higher gene modification efficiency of 66.7% as compared to 25% in the 4 h post-activation injection group. Furthermore, we observed that male ART-/- and ART+/- porcine fetal fibroblast (pFF) cells showed lower modification rates (2.5% and 1.9%, respectively) as compared to the ART intact cell line (8.3%). Interestingly, the female ART-/- and ART+/- pFF cells had modification rates (4.2% and 10.1%, respectively) similar to those seen in the ART intact cells. This study demonstrates the complex effect of various parameters such as microinjection timing and ART deficiency on gene editing efficiency in in vitro derived porcine embryos.


Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Animais , Feminino , Fertilização in vitro/veterinária , Edição de Genes/veterinária , Masculino , Microinjeções/veterinária , Suínos
2.
Front Immunol ; 11: 510, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32296428

RESUMO

Severe combined immunodeficiency (SCID) is described as the lack of functional T and B cells. In some cases, mutant genes encoding proteins involved in the process of VDJ recombination retain partial activity and are classified as hypomorphs. Hypomorphic activity in the products from these genes can function in the development of T and B cells and is referred to as a leaky phenotype in patients and animals diagnosed with SCID. We previously described two natural, single nucleotide variants in ARTEMIS (DCLR1EC) in a line of Yorkshire pigs that resulted in SCID. One allele contains a splice site mutation within intron 8 of the ARTEMIS gene (ART16), while the other mutation is within exon 10 that results in a premature stop codon (ART12). While initially characterized as SCID and lacking normal levels of circulating lymphoid cells, low levels of CD3ε+ cells can be detected in most SCID animals. Upon further assessment, we found that ART16/16, and ART12/12 SCID pigs had abnormally small populations of CD3ε+ cells, but not CD79α+ cells, in circulation and lymph nodes. Newborn pigs (0 days of age) had CD3ε+ cells within lymph nodes prior to any environmental exposure. CD3ε+ cells in SCID pigs appeared to have a skewed CD4α+CD8α+CD8ß- T helper memory phenotype. Additionally, in some pigs, rearranged VDJ joints were detected in lymph node cells as probed by PCR amplification of TCRδ V5 and J1 genomic loci, as well as TCRß V20 and J1.1, providing molecular evidence of residual Artemis activity. We additionally confirmed that TCRα and TCRδ constant region transcripts were expressed in the thymic and lymph node tissues of SCID pigs; although the expression pattern was abnormal compared to carrier animals. The leaky phenotype is important to characterize, as SCID pigs are an important tool for biomedical research and this additional phenotype may need to be considered. The pig model also provides a relevant model for hypomorphic human SCID patients.


Assuntos
Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Endonucleases/genética , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/imunologia , Subpopulações de Linfócitos T/imunologia , Animais , Complexo CD3 , Suínos
3.
Front Immunol ; 11: 100, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117254

RESUMO

Pigs with severe combined immunodeficiency (SCID) are an emerging biomedical animal model. Swine are anatomically and physiologically more similar to humans than mice, making them an invaluable tool for preclinical regenerative medicine and cancer research. One essential step in further developing this model is the immunological humanization of SCID pigs. In this work we have generated T- B- NK- SCID pigs through site directed CRISPR/Cas9 mutagenesis of IL2RG within a naturally occurring DCLRE1C (ARTEMIS)-/- genetic background. We confirmed ART-/-IL2RG-/Y pigs lacked T, B, and NK cells in both peripheral blood and lymphoid tissues. Additionally, we successfully performed a bone marrow transplant on one ART-/-IL2RG-/Y male SCID pig with bone marrow from a complete swine leukocyte antigen (SLA) matched donor without conditioning to reconstitute porcine T and NK cells. Next, we performed in utero injections of cultured human CD34+ selected cord blood cells into the fetal ART-/-IL2RG-/Y SCID pigs. At birth, human CD45+ CD3ε+ cells were detected in cord and peripheral blood of in utero injected SCID piglets. Human leukocytes were also detected within the bone marrow, spleen, liver, thymus, and mesenteric lymph nodes of these animals. Taken together, we describe critical steps forwards the development of an immunologically humanized SCID pig model.


Assuntos
Transplante de Medula Óssea , Subunidade gama Comum de Receptores de Interleucina/genética , Imunodeficiência Combinada Severa/genética , Animais , Animais Geneticamente Modificados , Antígenos CD34 , Sistemas CRISPR-Cas , Diferenciação Celular , Quimera , Proteínas de Ligação a DNA/deficiência , Modelos Animais de Doenças , Marcação de Genes , Engenharia Genética , Sobrevivência de Enxerto , Reação Hospedeiro-Enxerto , Humanos , Células Matadoras Naturais , Modelos Animais , Suínos , Linfócitos T/metabolismo , Transplante Heterólogo
4.
Comp Med ; 69(2): 123-129, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30755290

RESUMO

Swine are a commonly used animal model for biomedical research. One research application of swine models is the in utero injection of human or pig cells into the fetal liver (FL) or intraperitoneal space. In utero injections can be accomplished through laparotomy procedures in pregnant swine. In this study, we aimed to establish comprehensive laparotomy protocols for ultrasound-guided injections into fetuses. Two pregnant gilts, with a total of 16 fetuses, underwent laparotomy at 41 and 42 d of gestation. During surgery, we attempted to inject half of the fetuses in the FL or intraperitoneal space with saline and titanium wire for radiographic imaging after birth. After the laparotomy and fetal injections, both gilts maintained pregnancy throughout gestation and initiated labor at full term. Of the 16 fetuses present at the time of laparotomy, 12 were liveborn, 2 were stillborn, and the remaining 2 were mummies. A total of 7 fetuses from the 2 litters were known to have been injected with a wire during the surgery. After farrowing, piglets were radiographed, and 6 piglets were identified to have wire within the abdominal space. Livers were dissected, and additional radiographs were obtained. It was determined that one piglet had wire within the liver, whereas the other 5 had wire within the intraperitoneal space. Overall, we describe in-depth laparotomy surgery protocols, ultrasound-guided injection of saline and titanium wire into the FL or intraperitoneal space, postoperative monitoring protocols, and information on radiographic detection of titanium wire after piglet birth. These protocols can be followed by other research groups intending to inject cells of interest into either the intraperitoneal space or FL of fetal piglets.


Assuntos
Terapias Fetais/veterinária , Injeções Intraperitoneais/veterinária , Laparotomia/métodos , Animais , Feminino , Fígado/diagnóstico por imagem , Modelos Animais , Gravidez , Suínos , Ultrassonografia de Intervenção
5.
Front Oncol ; 9: 9, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30723704

RESUMO

Ovarian cancer (OvCa) is the most lethal gynecologic malignancy, with two-thirds of patients having late-stage disease (II-IV) at diagnosis. Improved diagnosis and therapies are needed, yet preclinical animal models for ovarian cancer research have primarily been restricted to rodents, for data on which can fail to translate to the clinic. Thus, there is currently a need for a large animal OvCa model. Therefore, we sought to determine if pigs, being more similar to humans in terms of anatomy and physiology, would be a viable preclinical animal model for OvCa. We injected human OSPC-ARK1 cells, a chemotherapy-resistant primary ovarian serous papillary carcinoma cell line, into the neck muscle and ear tissue of four severe combined immune deficient (SCID) and two non-SCID pigs housed in novel biocontainment facilities to study the ability of human OvCa cells to form tumors in a xenotransplantation model. Tumors developed in ear tissue of three SCID pigs, while two SCID pigs developed tumors in neck tissue; no tumors were detected in non-SCID control pigs. All tumor masses were confirmed microscopically as ovarian carcinomas. The carcinomas in SCID pigs were morphologically similar to the original ovarian carcinoma and had the same immunohistochemical phenotype based on expression of Claudin 3, Claudin 4, Cytokeratin 7, p16, and EMA. Confirmation that OSPC-ARK1 cells form carcinomas in SCID pigs substantiates further development of orthotopic models of OvCa in pigs.

6.
Xenotransplantation ; 26(2): e12466, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30311702

RESUMO

BACKGROUND: Severe combined immunodeficient (SCID) pigs are an emerging animal model being developed for biomedical and regenerative medicine research. SCID pigs can successfully engraft human-induced pluripotent stem cells and cancer cell lines. The development of a humanized SCID pig through xenotransplantation of human hematopoietic stem cells (HSCs) would be a further demonstration of the value of such a large animal SCID model. Xenotransplantation success with HSCs into non-obese diabetic (NOD)-derived SCID mice is dependent on the ability of NOD mouse signal regulatory protein alpha (SIRPA) to bind human CD47, inducing higher phagocytic tolerance than other mouse strains. Therefore, we investigated whether porcine SIRPA binds human CD47 in the context of developing a humanized SCID pig. METHODS: Peripheral blood mononuclear cells (PBMCs) were collected from SCID and non-SCID pigs. Flow cytometry was used to assess whether porcine monocytes could bind to human CD47. Porcine monocytes were isolated from PBMCs and were subjected to phagocytosis assays with pig, human, and mouse red blood cell (RBC) targets. Blocking phagocytosis assays were performed by incubating human RBCs with anti-human CD47 blocking antibody B6H12, non-blocking antibody 2D3, and nonspecific IgG1 antibody and exposing to human or porcine monocytes. RESULTS: We found that porcine SIRPA binds to human CD47 in vitro by flow cytometric assays. Additionally, phagocytosis assays were performed, and we found that porcine monocytes phagocytose human and porcine RBCs at significantly lower levels than mouse RBCs. When human RBCs were preincubated with CD47 antibodies B6H12 or 2D3, phagocytosis was induced only after B6H12 incubation, indicating the lower phagocytic activity of porcine monocytes with human cells requires interaction between porcine SIRPA and human CD47. CONCLUSIONS: We have shown the first evidence that porcine monocytes can bind to human CD47 and are phagocytically tolerant to human cells, suggesting that porcine SCID models have the potential to support engraftment of human HSCs.


Assuntos
Antígeno CD47/imunologia , Transplante de Células-Tronco Hematopoéticas , Monócitos/imunologia , Animais , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Leucócitos Mononucleares/imunologia , Macrófagos/imunologia , Camundongos Endogâmicos NOD/imunologia , Camundongos SCID , Fagocitose/imunologia , Receptores Imunológicos/imunologia , Suínos , Transplante Heterólogo/métodos
7.
Lab Anim ; 52(4): 402-412, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29325489

RESUMO

Severe combined immunodeficiency (SCID) is defined by the lack of an adaptive immune system. Mutations causing SCID are found naturally in humans, mice, horses, dogs, and recently in pigs, with the serendipitous discovery of the Iowa State University SCID pigs. As research models, SCID animals are naturally tolerant of xenotransplantation and offer valuable insight into research areas such as regenerative medicine, cancer therapy, as well as immune cell signaling mechanisms. Large-animal biomedical models, particularly pigs, are increasingly essential to advance the efficacy and safety of novel regenerative therapies on human disease. Thus, there is a need to create practical approaches to maintain hygienic severe immunocompromised porcine models for exploratory medical research. Such research often requires stable genetic lines for replication and survival of healthy SCID animals for months post-treatment. A further hurdle in the development of the ISU SCID pig as a biomedical model involved the establishment of facilities and protocols necessary to obtain clean SPF piglets from the conventional pig farm on which they were discovered. A colony of homozygous SCID boars and SPF carrier sows has been created and maintained through selective breeding, bone marrow transplants, innovative husbandry techniques, and the development of biocontainment facilities.


Assuntos
Modelos Animais de Doenças , Abrigo para Animais , Imunodeficiência Combinada Severa , Organismos Livres de Patógenos Específicos , Suínos , Criação de Animais Domésticos , Animais , Feminino , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...