Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 288(Pt 1): 132364, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34600007

RESUMO

The need for personal protective equipment increased exponentially in response to the Covid-19 pandemic. To cope with the mask shortage during springtime 2020, a French consortium was created to find ways to reuse medical and respiratory masks in healthcare departments. The consortium addressed the complex context of the balance between cleaning medical masks in a way that maintains their safety and functionality for reuse, with the environmental advantage to manage medical disposable waste despite the current mask designation as single-use by the regulatory frameworks. We report a Workflow that provides a quantitative basis to determine the safety and efficacy of a medical mask that is decontaminated for reuse. The type IIR polypropylene medical masks can be washed up to 10 times, washed 5 times and autoclaved 5 times, or washed then sterilized with radiations or ethylene oxide, without any degradation of their filtration or breathability properties. There is loss of the anti-projection properties. The Workflow rendered the medical masks to comply to the AFNOR S76-001 standard as "type 1 non-sanitory usage masks". This qualification gives a legal status to the Workflow-treated masks and allows recommendation for the reuse of washed medical masks by the general population, with the significant public health advantage of providing better protection than cloth-tissue masks. Additionally, such a legal status provides a basis to perform a clinical trial to test the masks in real conditions, with full compliance with EN 14683 norm, for collective reuse. The rational reuse of medical mask and their end-of-life management is critical, particularly in pandemic periods when decisive turns can be taken. The reuse of masks in the general population, in industries, or in hospitals (but not for surgery) has significant advantages for the management of waste without degrading the safety of individuals wearing reused masks.


Assuntos
COVID-19 , Pandemias , Humanos , Máscaras , Equipamento de Proteção Individual , SARS-CoV-2
2.
Sci Rep ; 9(1): 1883, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30760788

RESUMO

TiO2 photocatalyst is of interest for antimicrobial coatings on hospital touch-surfaces. Recent research has focused on visible spectrum enhancement of photocatalytic activity. Here, we report TiO2 with a high degree of nanostructure, deposited on stainless steel as a solid layer more than 10 µm thick by pulsed-pressure-MOCVD. The TiO2 coating exhibits a rarely-reported microstructure comprising anatase and rutile in a composite with amorphous carbon. Columnar anatase single crystals are segmented into 15-20 nm thick plates, resulting in a mille-feuilles nanostructure. Polycrystalline rutile columns exhibit dendrite generation resembling pine tree strobili. We propose that high growth rate and co-deposition of carbon contribute to formation of the unique nanostructures. High vapor flux produces step-edge instabilities in the TiO2, and solid carbon preferentially co-deposits on certain high energy facets. The equivalent effective surface area of the nanostructured coating is estimated to be 100 times higher than standard TiO2 coatings and powders. The coatings prepared on stainless steel showed greater than 3-log reduction in viable E coli after 4 hours visible light exposure. The pp-MOCVD approach could represent an up-scalable manufacturing route for supported catalysts of functional nanostructured materials without having to make nanoparticles.


Assuntos
Carbono/química , Luz , Nanoestruturas/química , Titânio/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Catálise , Escherichia coli/efeitos dos fármacos , Nanoestruturas/toxicidade , Aço Inoxidável/química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA