Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 2(10): 7313-7319, 2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30023546

RESUMO

There is an ever-growing need for detection methods that are both sensitive and efficient, such that reagent and sample consumption is minimized. Nanopillar arrays offer an attractive option to fill this need by virtue of their small scale in conjunction with their field enhancement intensity gains. This work investigates the use of nanopillar substrates for the detection of the uranyl ion and DNA, two analytes unalike but for their low quantum efficiencies combined with the need for high-throughput analyses. Herein, the adaptability of these platforms was explored, as methods for the successful surface immobilization of both analytes were developed and compared, resulting in a limit of detection for the uranyl ion of less than 1 ppm with a 0.2 µL sample volume. Moreover, differentiation between single-stranded and double-stranded DNA was possible, including qualitative identification between double-stranded DNA and DNA of the same sequence, but with a 10-base-pair mismatch.

2.
Anal Chem ; 87(13): 6814-21, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26041094

RESUMO

The unique properties associated with beryllium metal ensures the continued use in many industries despite the documented health and environmental risks. While engineered safeguards and personal protective equipment can reduce risks associated with working with the metal, it has been mandated by the Environmental Protection Agency (EPA) and Occupational Safety and Health Administration (OSHA) that the workplace air and surfaces must be monitored for toxic levels. While many methods have been developed to monitor levels down to the low µg/m(3), the complexity and expense of these methods have driven the investigation into alternate methodologies. Herein, we use a combination of the previously developed fluorescence Be(II) ion detection reagent, 10-hydroxybenzo[h]quinoline (HBQ), with an optical field enhanced silicon nanopillar array, creating a new surface immobilized (si-HBQ) platform. The si-HBQ platform allows the positive control of the reagent for demonstrated reusability and a pillar diameter based tunable enhancement. Furthermore, native silicon nanopillars are overcoated with thin layers of porous silicon oxide to develop an analytical platform capable of a 0.0006 µg/L limit of detection (LOD) using sub-µL sample volumes. Additionally, we demonstrate a method to multiplex the introduction of the sample to the platform, with minimal 5.2% relative standard deviation (RSD) at 0.1 µg/L, to accommodate the potentially large number of samples needed to maintain industrial compliance. The minimal sample and reagent volumes and lack of complex and highly specific instrumentation, as well as positive control and reusability of traditionally consumable reagents, create a platform that is accessible and economically advantageous.

3.
Analyst ; 140(10): 3347-51, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25857214

RESUMO

The work presented herein evaluates silicon nano-pillar arrays for use in planar chromatography. Electron beam lithography and metal thermal dewetting protocols were used to create nano-thin layer chromatography platforms. With these fabrication methods we are able to reduce the size of the characteristic features in a separation medium below that used in ultra-thin layer chromatography; i.e. pillar heights are 1-2 µm and pillar diameters are typically in the 200-400 nm range. In addition to the intrinsic nanoscale aspects of the systems, it is shown they can be further functionalized with nanoporous layers and traditional stationary phases for chromatography; hence exhibit broad-ranging lab-on-a-chip and point-of-care potential. Because of an inherent high permeability and very small effective mass transfer distance between pillars, chromatographic efficiency can be very high but is enhanced herein by stacking during development and focusing while drying, yielding plate heights in the nm range separated band volumes. Practical separations of fluorescent dyes, fluorescently derivatized amines, and anti-tumor drugs are illustrated.

4.
Anal Chem ; 86(23): 11819-25, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25368983

RESUMO

The ability to detect a few molecules present in a large sample is of great interest for the detection of trace components in both medicinal and environmental samples. Surface enhanced Raman spectroscopy (SERS) is a technique that can be utilized to detect molecules at very low absolute numbers. However, detection at trace concentration levels in real samples requires properly designed delivery and detection systems. The following work involves superhydrophobic surfaces that have as a framework deterministic or stochastic silicon pillar arrays formed by lithographic or metal dewetting protocols, respectively. In order to generate the necessary plasmonic substrate for SERS detection, simple and flow stable Ag colloid was added to the functionalized pillar array system via soaking. Native pillars and pillars with hydrophobic modification are used. The pillars provide a means to concentrate analyte via superhydrophobic droplet evaporation effects. A ≥ 100-fold concentration of analyte was estimated, with a limit of detection of 2.9 × 10(-12) M for mitoxantrone dihydrochloride. Additionally, analytes were delivered to the surface via a multiplex approach in order to demonstrate an ability to control droplet size and placement for scaled-up uses in real world applications. Finally, a concentration process involving transport and sequestration based on surface treatment selective wicking is demonstrated.

5.
ACS Appl Mater Interfaces ; 6(20): 17894-901, 2014 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-25247442

RESUMO

Silicon nanopillars are important building elements for innovative nanoscale systems with unique optical, wetting, and chemical separation functionalities. However, technologies for creating expansive pillars arrays on the submicron scale are often complex and with practical time, cost, and method limitations. Herein we demonstrate the rapid fabrication of nanopillar arrays using the thermal dewetting of Pt films with thicknesses in the range from 5 to 19 nm followed by anisotropic reactive ion etching (RIE) of the substrate materials. A second level of roughness on the sub-30 nm scale is added by overcoating the silicon nanopillars with a conformal layer of porous silicon oxide (PSO) using room temperature plasma enhanced chemical vapor deposition (PECVD). This technique produced environmentally conscious, economically feasible, expansive nanopillar arrays with a production pathway scalable to industrial demands. The arrays were systematically analyzed for size, density, and variability of the pillar dimensions. We show that these stochastic arrays exhibit rapid wicking of various fluids and, when functionalized with a physiosorbed layer of silicone oil, act as a superhydrophobic surface. We also demonstrate high brightness fluorescence and selective transport of model dye compounds on surfaces of the implemented nanopillar arrays with two-tier roughness. The demonstrated combination of functionalities creates a platform with attributes inherently important for advanced separations and chemical analysis.

6.
Anal Chem ; 85(19): 9031-8, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23984845

RESUMO

The importance of fluorescent detection in many fields is well established. While advancements in instrumentation and the development of brighter fluorophore have increased sensitivity and lowered the detection limits of the method, additional gains can be made by manipulating the local electromagnetic field. Herein we take advantage of silicon nanopillars that exhibit optical resonances and field enhancement on their surfaces and demonstrate their potential in improving performance of biomolecular fluorescent assays. We use electron beam lithography and wafer scale processes to create silicon nanoscale pillars with dimensions that can be tuned to maximize fluorescence enhancement in a particular spectral region. Performance of the nanopillar based fluorescent assay was quantified using two model bioaffinity systems (biotin-streptavidin and immunoglobulin G-antibody) as well as covalent binding of fluorescently tagged bovine serum albumin (BSA). The effects of pillar geometry and number of pillars in arrays were evaluated. Color specific and pillar diameter dependent enhancement of fluorescent signals is clearly demonstrated using green and red labels (FITC, DyLight 488, Alexa 568, and Alexa 596). The ratios of the on pillar to off pillar signals normalized by the nominal increase in surface area due to nanopillars were found to be 43, 75, and 292 for the IgG-antibody assay, streptavidin-biotin system, and covalently attached BSA, respectively. Applicability of the presented approaches to the detection of small numbers of molecules was evaluated using highly diluted labeled proteins and also control experiments without biospecific analytes. Our analysis indicates that detection of fewer than 10 tagged proteins is possible.


Assuntos
Nanopartículas/química , Silício/química , Espectrometria de Fluorescência/instrumentação , Animais , Anticorpos/análise , Biotina/análise , Bovinos , Imunoglobulina G/análise , Soroalbumina Bovina/análise , Estreptavidina/análise , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...